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SUMMARY

A semi-analytical procedure for evaluating the compliance functions of semi—

infinite viscoelastic multi-layered foundation is developed. The complex
frequency response functions and the earthquake response of typical concrete
gravity dams resting on multi-layered foundation are studied. Based on these

investigations, it is found that the foundation flexibility tends to reduce the
earthquake response of concrete gravity dams in general, and the higher the
exciting frequency , the more significant the interaction effect becones.
Moreover, the stiffness of the surface layer plays the most important role in
dam-foundation interaction, the softer the surface layer, the more obvious the
tendency of reduction appears.

INTRODUCTION

The structure-foundation interaction and its effects on the earthquake
response of dams and other important buildings is a problem of great concern in
the engineering design. Besides, it also represents an active field of
earthquake engineering research. However, the establishment of dynamic
impedance functions of half plane foundation associates with some difficulties in
mathematics. Up to the present time , very few of analytical solutions such as
the viscoelastic half plane and layered foundation have been obtained (Ref. 1,2).
For these reasons, many researchers are engaged in creating some approximate
approaches to calculate the dynamic stiffpess matrixes of complex foundation |,
while others devoted to work out wave transmitting boundaries in order to
directly evaluate the response of structure-foundation systems subjected to
earthquake excitation . Although these efforts have achieved good results, to a
certain degree, they are still time consuming. Therefore, only limited number of
quantitative results dealing with structure-foundation interaction problems are
obtained. In order to get a clearer understanding of the structure-foundation
interaction effect on the earthquake response of dam structure, in this paper, a
semi—analytical procedure for evaluating the compliance functions of viscoelastic
half-plane with inhomogeneities along the depth , by virtue of the cubic spline
functions, is presented. It has the advantages of transforming the solution of a

two— or three-dimensional problem into that of a one-dimensional problem.  Thus,
the computational efforts are reduced to a great extent , while it ensures the
required precisions. On this basis, the response characteristics of concrete

gravity dams taking into account the foundation flexibility is studied.

Vil-371



COMPUTATIONAL MODEL FOR VISCOELASTIC LAYERED FOUNDATION

The dynamic compliance functions of viscoelastic half plane foundation with
vertical inhomogeneities are derived semi-analytically in the following manner.
First, the domsin to be analyzed is defined as part of the foundation with
boundaries placed far enough from the base of the structure. The domain in the
vertical direction is partitioned into N equal parts with node points located at
the interface between two layers of different nature. Then, the displacement
field of foundation excited by a upiformly-distributed harmonic load with a unit
resultant acting upon the surface of the foundation within a lenth b is expressed
as given in formula (1).
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$,=&.(y) are base vectors consisting of cubic B-spline functions ¢(y); a and

b are corresponding parameters of the splines; and X and Y are Fourier
series (Ref. 3). Writing it in the
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Following the procedure of finite element method, we get the generalized
stiffness, and mass matrixes of the foundation [K], [M] respectively. Eventually,
the dynamic compliance coefficients are obtained by solving the equation of
motion in the frequency domain.

(-« [M}+(1+ip) [K]) {r}={P} (3)

where 7 is the hysteretic damping factor; {P} is the generalized load vector
and {r} are the unknown generalized displacements we are seeking for. It is
interesting to note that because of the orthogonal properties of functions X and
Y ,[K] and [M] turn to diagonally block-banded matrixes and Eq. (3) becomes

(- Ml +(1+ip) [K], . ) {r}, =(P}, (m=1,2, ... ,M) 4

Each set is only composed of 2(N+1) equations. Owing to the excellent
interpolation characteristics of spline functions, 5 to 8 terms for N are enough
to ensure appropriate accuracy of the results. Thereby, the computational effort
for determining the impedance matrix (the inverse of the compliance matrix) of
the foundation is reduced to a great extent. It is worth noting here that the
proposed method can be easily extended to three dimensional cases(Ref. 3).

For elastic media, the wave reflecting effects at artificial boundaries can
not be disregarded. However, the phenomena are quite different for viscoelastic
media. If artificial boundaries are located far enough from the loading points,
the reflected waves attepuate rapidly during the transmission process, and become
insignificant, so that an infinite domain can be approximated by a domain with
limited size.

In order to develop an understanding of the effectiveness of the method, the
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calculated compliance coefficients for homogeneous viscoelastic half-plane are
compared to the analytical solution. In table 1, the first and second rows
denote the results obtained by the present method and those by the analytical
solution of A.K. Chopra (Ref. 1) respectively. They agree fairly well.

Table 1 Dynamic Compliance Coefficients
for Homogeneous Viscoelastic Halfplane

¥ =1/3 a,=@bc, =0.5 7=0.25
x/b 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5
, 0.3593 0.0687 -0.0291 -0.0767 -0.0970 -0.0891 -0.0817 -0.0667
£% 0.3548 0.0707 ~0.0296 -0.0787 -0.0957 -0.0929 -0.0806 -0.0667

0.2544 -0.0489 -0.
£7 0.2385 -0.0473 -0.

-0.3546 -0.2208 -0.
g7 -0.3553 -0.2259 -~C.

0.2091 -0.0641 -0C.
£ 0.2127 ~0.0540 -0.

-0.3363 -0.1789 -0.0674 -0.0085 0.0122 0.0232
g -0.3400 ~0.1838 -0.0719 -0.0131 0.0062 ©

0.1030 -0.1472 -0.07898
0.0955 ~0.1385 -0.0812

-0.2%21 -0.0628 0.0792 0.0883 0.0122 -0.0547 -0.0502 -0.0039
g7, -0.2206 -0.0636 0.0811 ©

EARTHQUAKE RESPONSES OF GRAVITY DAMS INCLUDING STRUCTURE-FOUNDATION EFFECTS

Based on the foundation impedance matrix [S,w)] obtained above , the
earthquake response of concrete gravity dams resting on the foundation with
inhomogeneities along the depth can be determined by the equation of motion of
the system.

([Mg1+[M, 1) {U}+[C, 1{U}+( (BgJ+[8;D{U}=~([My]+[M,]){e}ay(t) (5)

where [Mg], (C4], [K,] are the mass , damping and stiffness matrixes of the dam
respectively, as(t) is the time history of earthquake ground acceleration, [M,]
is the matrix of added mass exerted by the reservoir water. For simplicity, the
compressibility of water has been neglected. However, by employing the
generalized boundary element method suggested by the authors (Ref. 4), it is not
difficult to take into consideration the water compressibility and energy
absorption effect at reservoir bottom.

As the dynamic impedance matrixes of the foundation being a function of the
exciting frequency, Eq.(6) is convenient to solve in the frequency domain.
First, the complex frequency response functions of the system are calculated in
accordance with the equation of motion due to a unit harmonic excitation.

(— oo’ (MM, ]+ (L) [KyJ+([S, (@) 1) {U(@) }=—([My]+[M.] ) {e} (6)

Then, the displacement response in the time domain can be determined through
Fourier transform.

iwtd

U(t):;';j_g(w) A @) e“*de Ag(m)=j:ag(t) e“tat (7)

Where T is the duration of the earthquake.
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Based on the procedures explained above,
numerical analysis of a 100™ high concrete gravity
dam including damfoundation interaction has been
implemented. The dam is modelled by an assemblage
of 4 node isoparametric finite elements as shown in
Fig. 2. Three cases of inhomogeneous foundations
with wvariable stiffness along the depth are
investigated to illustrate the foundation nature on
the earthquake response of gravity dams. Fig. 3
demonstrates the complex frequency response Fig.2
function for the absolute values of horizontal
acceleration at dam crest due to the unit horizontal earthquake excitation.
Cases of rigid foundation and currently used foundation model with massless
springs are also presented in the figure for comparison.

It can be proved that for concrete gravity dams other than 100™ in height
but having similar geometrical shapes and similar discretization of finite
element meshes, the following relations between their values of complex frequency
response of acceleration exist.

Agfw)= A () . ey =yw = 100w/H (8)

Where A, and A,,are complex frequency response functions of acceleration for dams
H™ and 100™ high respectively; XA is the scale factor. So the numerical results
for dams 100 ™ high may easily be extended to dams other than 100™ high.

Fig. 5 shows the time history of horizontal displacement at the crest of a
100™ high concrete gravity dam due to the May 18,1940 El1 Centro Earthquake
excitation (@pq.=341 cm/sec.), the response spectrum of which covers a quite
wide range of frequency content.

In a previous paper of the authers (Ref. 5,6) the stationary random response
of concrete gravity dams supported on homogeneous viscoelastic half-plane with

various stiffness properties has been studied. In comparison with the average
values of horizontal base shear response for typical gravity dams 50™ ,100™ ,and
200™ in height on the rigid foundation , those values for dams resting on

homogeneous flexible foundations subjected to six actual earthquake waves and
two narrow band white noise are shown in Fig. 6.
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Fig.3 Complex Response Function of Absolute Acceleration
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BASIC CONCLUSIONS

From all the results presented above, some conclusions about dam-foundation
interaction effects may be drawn:
(1) The foundation flexibility tends to reduce the earthquake response of
concrete gravity dams in general, because a greater part of vibration energy is
being radiated into the infinite foundation medium.
(2) The reduction of the complex frequency response of the dam is remarkable when
the exciting frequency is greater than the fundamental frequency of the dam—
foundation system, and the higher the exciting frequency, the clearer the
tendency of reduction can be found. However, the interaction effect becomes less
important when the exciting frequency is close to the fundamental frequency of
the system.
(3) For concrete gravity dams about equal or higher than 100m in height, the dam—
foundation interaction becomes significant, on the contrary, for dams equal or
lower than 50m in height, the interaction effect becomes less apparent. As a
matter of fact, in the later case, the predominent frequencies of earthquakes for
rock foundation coincide appoximately with the fundamental frequency of the
system, while in the former case, the predominent frequencies of earthquakes
appoach the second frequency of the system, where damfoundation interaction
becomes significant.
(4) The dam—foundation interaction lowers the vibration frequencies of the system
in comparison with those on the rigid foundation. In this aspect, the currently
used massless spring model of the foundation behaves the same nature as the real
dam—foundation system. However, the massless spring model fails to simulate the
energy dissipation characteristics due to radiating damping, it leads to
different complex frequency response functions and different earthquake response
of dams.
(5) The foundation inhomogeneity has great influences on the foundation
compliance matrixes, hence it affects the eéarthquake response of dams
considerably. Nevertheless,the flexibility of the surface layer plays the most
important role in the dam~foundation interaction. The softer the surface layer,
the more apparent the interaction effect appears.
(6) In case of the top layer foundation stiffness being five times greater than
that of the dam, the interaction effect becomes insignificant, and the earthquake
responses of dam are close to that on the rigid foundation.
(7) The interaction effects depend on height of the dam, stiffness ratio of
foundation to dam, position of weak layer imn foundation, frequency spectrum
characteristics of input seismic ground motion and many other factors.
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