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SUMMARY

In the nonlinear dynamic response analysis of reactor buildings, restoring
force characteristics must be provided, which can precisely predict the
nonlinear behavior of shear walls up to the ultimate strength. This paper
describes an investigation to establish a standard evaluation method by the
extensive and rigorous reviews of the existing experimental results.

INTRODUCTION

In the seismic design for reactor buildings, nonlinear dynamic response
analysis plays an important role in both examining the seismic safety of
buildings and evaluating the response of related equipment. In recent years, a
number of model tests have been carried out for reinforced concrete (R/C) shear
walls in reactor buildings, which provide a large stock of test data with many
new findings on restoring force characteristics. This paper proposes an
evaluation method for restoring force characteristics of R/C shear walls based
on the reviews of these existing test data in Japan. It provides a standard
evaluation method for restoring force characteristics to be used for nonlinear
dynamic response analyses of reactor buildings. In the analyses shear
deformations and bending deformations of a wall are treated independently. The
restoring force characteristics are assigned in terms of shear stress-strain
relationship (referred to as 1-r relationship hereafter) and of bending
moment-curvature relationship (referred to as M-¢ relationship hereafter),
respectively. This paper proposes skeleton curves with practical hysteresis
models modified so as to closely resemble the test results.

OUTLINE OF THE SPECIMENS REFERENCED

The scope of the survey is restricted to the horizontal loading tests
conducted on shear walls that constitute principal earthquake resistant
components of reactor buildings. The configuration of the specimens
investigated comprise 22 box walls, 26 R/C cylindrical walls, 19 cylindrical
walls under prestressed force and/or internal pressure, 3 truncated conical
walls, 9 octagonal tube walls and 24 I-shaped section walls, which amount to
103 specimens. As for dimensions of the specimens, the center-to-center
distances between tensile and compression flanges (D) were typically found
between 100 and 200cm, while the wall thicknesses (t) were between 5 and 10cm.
This corresponded to 1/10 to 1/30 scale of actual dimension of shear walls in
reactor buildings. The shear span ratios (M/QD) were distributed between 0.5
and 1.5. The compressive strength of concrete of the specimens was normally
found between 240kg/cm? and 260kg/cm2. While several specimens exclusively
designed for Prestressed Concrete Containment Vessel (PCCV) showed a
compressive strength greater than U400kg/cm@. The reinforcement ratios agreed
considerably with those of real reactor buildings. Most of the ratios were
lower than 1.2%. Of the 103 specimens, 67 were useful for discussion on the
skeleton curves, U8 were for discussion on the hysteresis rules and 23 were
only useful for discussion on the ultimate loads.
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SKELETON CURVE FOR t-r RELATIONSHIP

Skeleton Curve The skeleton curve for -y relationship is idealized as a
tri-Iinear curve with three control points (1, r1), (w2, r2) and (33, 73}
respectively, as shown in Fig. 1. These control points can be defined as
follows;
st [ o1 =\/,/Fc ( /Fe + ov ) (1)
point Lyq 2 o1 /0 (2)
2nd (T2 = 1.35% (3)
pOiI’lt Lyo = 3?,1 (4)

A

ultimate rt3 = {1 — 18/ (4.5 Fe )} 1w + 15 ; for s (5-1)

4.5 fe
point = M.Sﬁ- ; for ts > L}.Sﬁc_:‘ (5-2)

Ly3 = 4.0 x 10-3 (6)
where,
g = (3 - 1.84 /7 QD) /Fe M/QD = 1 ; if M/QD > 1)
g = (Py + PR) soy/2 + (aV + cH)/2
Fe : compressive strength of concrete (kg/cm?)
G : shear modulus of concrete (kg/cm?)
cE : Young's modulus of concrete (kg/cm?)

Py, Py : reinforcement rati¢ in vertical and horizontal direction, respectively
oy,0d : axial stress in vertical andhorizontal direction, respectively (kg,/cmE)
s0y : yielding stress of a reinforcing bar (kg/cm2)

M/QD : shear span ratio

Verification The equation (1) corresponds to the average shear stress at the
initiation of central obligue cracking in the walls subjected to in-plane shear
forces (Ref.1). As seen in Table 1 and Fig. 3(a), the average of the ratios of
the experimental values to the theoretical values is 0.98, indicating that the
model approximation is satisfactory. The equation (2) for determining the
shear strain corresponding to t7 uses the elastic stiffness in the -7
relationship with the shear modulus G. The experimental results for the t-7
relationship indicate that the stiffness after cracking takes a shape of convex
curve. To obtain the approximate curve for this empirical curve, r2=3r1 is
assumed and the corresponding v is examined from these curves. Then the ratio
of 2 to the corresponding value t], or B is obtained for each test and shown
in Fig. 3(b).The average value of B, 1.35, gives good approximation to the
experimental results.

For the ultimate shear stress, the eguation (5) which is derived by
taking the stress carried by the reinforecing bars as well as the stress carried
by the concrete into account (Ref.2). As shown in Table 1 and Fig. 3 (c), the
average of the ratios between the experimental values and the corresponding
calculated values is 1.04, evidencing that the proposed equation approximates
the behaviors of actual walls fairly well, although a slight fluctuation of the
ratios could be observed. Moreover, the experimental values for the I-shaped
section walls having a large amount of vertical reinforcement in flange walls
are exeluded as these walls are not found in any real reactor building, the
average value of B and that of the standard deviation may be further improved.
Around the ultimate strength level, the experimental t—y relationships of the
cylindrical walls or octagonal tube walls have relatively large deformation
capacity as compared with the box walls or I-shaped section walls. Considering
the fact that the difference of the ultimate shear strain among shear walls of
different configuration is yet to be investigated and that the experimental
values of the ultimate shear strain fluctuate considerably, the ultimate shear
strain is set uniquely to 4 x 10-3(Ref.3).
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SKELETON CURVE FOR M-&® RELATIONSHIP

Skeleton Curve The skeleton curve for M-¢ relationship is idealized as a
tri-Iinear curve with three control points (M1, ¢1), (M2, ¢2) and (M3, ¢3)
respectively, as shown in Fig. 2. These control points can be defined as
follows;
1st [M1 = Ze (ft + ov) (7
point @1= M1/(cE - Ie) (8)
2nd [Me = My (9
point @o= @y (10)

Mu (1
0.004/Xnu (@3 = 20Q2 ; if @3 > 2092) (12)

ultimate [ M3
point @3

where,

Ie : moment of inertia of a cross section including reinforcement (cmt)

Ze : section modulus including reinforcement (cm3)

ft : tensile strength of concrete (kg/cm2) ; ft = 1.2 VFe

My : bending moment when tensile reinforcement reaches the yielding state (kg-cm)

oy : curvature of walls when tensile reinforcement reaches the yielding state (1/cm)
D : center-to-center distance between tensile and compression flanges (cm)

Mu : full plastic moment (kg-cm)

Xnu : distance from extreme compression fiber to neutral axis at full plastic stage(cm)

Verification For verification of the proposed model, the experimental values
of the bending moment (M) and the bending rotation (RB) in the base of test
specimens are used. Additional deformations due to an elongation and a slip of
the tensile reinforcing bars in the base are considered as rotation [4]. The
M-RB relationship for the experiment is also expressed with a tri-linear curve.
The equation (7§ for determining the bending moment for the first point is
obtained by summing the fiber stress at the initiation of flexural cracking,
1.2 VFe, and the axial stress. Fig. 5(a) shows a comparison of the loads at
the initiation of flexural cracking in the experiments and the calculations.
Fig. 5(b) shows the experimental results of the bending moment at the first
point and the calculated results in comparison. The averages of the ratios
between the experimental results and the calculated results (referred to as
RE/c hereafter) are 0.87 and 1.10, respectively. These figures indicate that
the calculated values for the load at the initiation of flexural cracking are
slightly higher than the experimental values, while those of the bending moment
at the first point in the M-Rp relationship are a little lower than the actual
experimental results. The equation (8) for determining the curvature at the
first point 1is derived by defining the initial stiffness of the M-
relationship skeleton curve as the product of Young's modulus of concrete (cE
and the moment of inertia of cross section (Ie), cE-le.

The equations (9) and (10) for determining the bending moment (M2) and the
curvature (¢2) for the second point are defined respectively as the moment and
the curvature when the tensile reinforcement reaches the yielding state based
on the Bernoulli-Eulerian theory. As seen in Fig. 5(c¢), the average of Rg/c is
1.07, shown that the calculated results generally agree with the experimental
results. As seen in Fig. 5(d), the average of Rg/c for the ultimate point is
1.44, indicating that the experimental results considerably surpass the
calculated results.

The ultimate bending moment (M3) is defined as the full plastic moment at
flexural failure of the compression side of concrete. The stress of the
compression side of concrete and that of the tension side of reinforcement at
this moment is set to be 0.85 Fc and sOy, respectively. The equation (12) for
determining the ultimate curvature (¢3)” is obtained by assuming the strain of
extreme compression fiber as 0.004. In case of walls with small axial stress
and reinforcement ratio, the neutral axis possibly moves into the compression
zone of flange walls, making the ultimate curvature extremely large. However,
such phenomena will not be found in real reactor buildings. Therefore, the
upper limit of ¢3 is set to be 20 ¢2.
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HYSTERESIS MODELS

The hysteresis models adopted here for the t-r, and the M-¢ relationships
include the following characteristics, respectively. These models are
determined so as to be practical enough to be used for a dynamic response
analysis.

t-7r Relationship (Fig.5)

(1) The hysteresis model for the t-r relationship is set to be a peak-to-peak
oriented system.

(2) A stable loop does not have any area corresponding to the hysteretic
energy loss.

(3) The unloading path from the maximum (or minimum) value point beyond the
first control point draws a straight line that connects the maximum (or
minimum) value point with the minimum (or maximum) value point on the
opposite side. If the minimum (or maximum) value point on the opposite
side does not exceed the first control point on the skeleton curve, the
first control point is regarded as the minimum (or maximum) value point.

M- Relationship (Fig.6)

(1) The hysteresis model for the M-¢ relationship is also set to be a peak-to-
peak oriented system.

(2) A stable loop dose not have any area corresponding to the hysteretic
energy loss up to the second control point.

(3) The unloading path from the maximum (or minimum) value point beyond the
second control point forms a stable loop in such a way that the path is
directed towards the peak ever reached on the oppositeside. If the
minimum (or maximum) value point on the opposite side does not exceed the
second control point on the skeleton curve, the second control point is
assumed as the minimum (or maximum) value point.

(4) The skeleton curve is of a degrading-trilinear type whose stable loop
forms a parallelogram so long as the maximum value point exceeds the
second control point. The area of hysteresis loop varies in accordance
with an equivalent viscous damping in proportion to the maximum curvature.
The lower corner point of the parallelogram is defined as a point where
phe;pcmgn% %s smaller than that of the maximum value point by Ms, as shown
in Fig. c).

CONCLUSION

A standard evaluation method for restoring force characteristics required
in nonlinear dynamic response analysis of nuclear plant reactor buildings is
proposed based on the extensive reviews of the existing test data on R/C shear
walls in reactor buildings in Japan. Reliability of the equations to specify
each control point on the skeleton curves has been examined by comparing the
ratio of calculated values and the averaged experimental ones and by analyzing
the standard deviations of the test results. The present study will provide
the basic data for statistical treatment of the behavior of reactor buildings
during a very severe earthquake.
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Table 1 Comparison of Experimental Results with Calculated Results Table2 Comparison of Experimental Results with Calculated Results at
at Control Points and Initial Stiffness for r—y Relationship Control Points and Initial Stiffness for|M—RB Relationship
Number of Standard Nurmber of Standard
specimens | AYET28¢ | deviation specimens | V7288 | deviation
shear stress | all specimens 57 0.98 0.21 load when flexural cracking occurs 68 087 0.29
of 1st point "
(1) exceptO@® 51 0.98 0.18 M oment of 1st point for test values 50 110 095
approximated by tri-linear curve ) .
initial i 4 . .
ol | Flpecimens | 49 093 | 01 initial stiffaess a4 | om | o3
©) exceptORQ 2 094 0.16 Ms moment of 2nd poi{lt_for test values % 107 017
slfleardstress all specimens 58 0.99 0.17 approximated by tri-linear curve ) )
of 2nd point - ;
(r2) | except @ 51 100 017 Ruz ;c;';fft”“al defomation of 2nd % 144 | o054
:ilxtei;a;:ress all specimens 8 1.04 0.19 Ms | ultimate moment 18 109 0.15
(73)| except @ 7% 1.01 0.15
ultimate all specimens 48 174 0.76
shear strain
(73)| except @ 37 1.08 082

NB. @ box wall subjected to diagonal load
@ specimen using mortar
®: PCCV

@ specimen with flexural reinforcement in flange walls

VI-751



[
154
e} =~
<] <]
6ﬁ%ﬁ 15 o
2l . Q -
.E ﬁ 1.04 %% Do @ 069 S
iz " Pmon TCe | _We(=08) O 2y o’ % ®
as | e RO - S| TTTRRame T YT T T me=Lh)
@ 213 1.0 2 a ave,
] 212 o
af &iS o
0.5+ ~ B —E O
:‘—t"‘ " — o
Fe(kg/or) 05 Fe(kg/cm)
200 300 400 500 600 200 300 400 500
(a) Comparison of M at 1st Point (b) Comparison of M1 at 1st Point
(initiation of flexural cracking) (approximation by three line segmen'ts)
3.0
.
157 o o
o o ¢ EE .
=1
HE og%“?u ave (=107) R LI
- —_— TS T e e s e - 3
R "o A omgen ezl __
E1S8 ORg w@%gm ®
wof @c¥ 7
il et
05 Fe(kg/ar) ‘ i Fe(kg/ew)
200 300 400 500 200 300 400 500
(c) Comparison of M2 at 2nd Point (d) Comparison of Rsz at 2nd Point
Figé Comparison of Experimental Results with Calculated Results at Control Points for M~ RB Relationship
T T
I""‘
|
Fmin A/}
; 4 Ymax 7 Y
|
b
I
]
)
(a) Transient State (b) Stable State
Fig. 5 Hysteresis Rules for 7~y Relationship
M M M
. L=
P s
-~ R
e 7 AR
: M ) - ' ,"_5: Me
1 . il ! i
) Pmin ; g Pmin /' /J ) 7
é Pmax s Mt // LS Pmax
t 7 2 Kz
) ’ s
e - s k/" Stable loop
L (Me=2M)
(a) Stable State (b) Transient State (pmax> $2) () Within a Stable Loop ($min< $< fnax)

Fig. 6 Hysteresis Rules for M—¢ Relationship

VI-752



