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SAMMARY

Cylindrical liquid storage tank of cantilevered type with flexible bottom
plate supported on the surface of the soil layer and subjected to the harmomnic
vertical ground excitation is dealt with. Theoretical solutions of displacement
and stress of the soil and tank are obtained. The influence of the rigidity of
the plate and the soil layer on the dynamic response characteristics of the soil~
tank system is discussed.

INTRODUCTION

A few studies pertinent to the dynamic response of flexible foundation have
been presented recently, For rectangular plates on an elastic half space, Iguchi
and Luco (Ref.l) obtained numerical results by use of the subdivision method which
divides the contact region between the ground and the plate into small subregions,
and reported on the influence of the flexibility of the plate on the impedance
functions which differs from those of rigid plate. Similarly, Whittaker and
Christiano (Ref.2) studied including the investigation on the effect of the
mass of the plate. From the earthquake observations of the liquid storage tanks,
predominance of the axisymmetrical mode have been sometimes reported. This paper
is adressed to the study of the axisymmetrical response of the cylindrical liquid
storage tank with deformable bottom plate supported on a soil layer under the har-
monic and vertical excitation. By employing the finite Fourier-Hankel transfor-
mation method, theoretical solution can be obtained and numerical results de-
scribing the dynamic response characteristics are presented.

FORMULATION OF THE PROBLEM

The analysis model of the soil-tank system subjected to the harmonic vertical
vibration is shown in Fig.l. The soil layer is dealt by dividing into two fields,
i.e. near field I and far field II, by an imginary (transmitting) boundary at r=
Ro. The tank consists of three parts, i.e. a flexible circular bottom plate, cy-.
lindrical shell wall and liquid, which are consistently dealt as continua. 1In the
analysis the followings are assumed.

1. Soil layer is homogeneous, isotropic and resting on a rigid bedrock. In the
far field, the horizontal component of the dilatational strain is neglected,

2. The bottom plate and the side wall of the tamnk are elastic,

3. At the interface (at z=H), contact condition of vertical displacement, i.e.
wp=wl at r<ro and frictionless conditiom, i.e. Trzy=0 at rgRo, are adopted,
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Fig. 1 Soil-Tank System in the Analysis

4, Hysteretic damping is assumed for the soil, bottom plate and side wall,
5. Liquid is incompressible, irrotational and inviscid.

Analysis of the Soil Layer The equation of motion of the soil layer subjected
to the harmonic and vertical vibration is written as follows.

2w [ %(ru>’]’ +putt + Odw? T+ pwPu = 0, (€D)]

Od2u)u " + pe(e’)” + Q) [S(rw) *1" +pw? Grbrg) = 0, 2)

where u and w are the horizontal and vertical relative displacements in the r
and the z directions in Fig.l, wg is the amplitude of the vertical motion at the
bedrock, time factor eiWt is omitted for convenience. F’=3F/3r and F'=3F/3z.

By introducing the fraction of the linear hysteretic damping &, Lame’s constants
A and Y in Eqs.(l) and (2) are expressed as

A= (L1l+ELi )k, w=(1+E&i)u

For near field I, by the finite Hankel transformation of the first order in
the rdirection and the finite Fourier cosine transformation in the z direction of
Eq. (1) and similarly by the finite Hankel transformation of order zero and the
finite Fourier sine transformation of Eq.(2), i.e. by operating Eqs.(l) and (2) as

(3)

fflfgo{EQ-(l)}Jl(Bnr)rdr-cosamzdz, IJ{I§°{Eq.(2)}Jo(8nr)rdr-sinumzdz,

the differential equations (1) and (2) become a set of linear simultaneous equa-
tions in terms of imaginary functions uyl!€(Bn,om) and wi9S(Bn,om) as follows.

(+20) B8 +uod —pw®, (W) Bnoim u;“wn,am)] . {R-}C(Bn,am) “
O Bnom,  OF20)od +uBd —pw? | {w]® (Bn,om) 23% (Bn,om) J

where om=(2m-1)T/2H, Bp take zero (for n=0) and positive roots of J;(BnRe)=0

(for n=1,2,..). The right side terms of the Eq.(4) include six imaginary
functions which are dealt as the unknown constants. By the inverse transfor-
mation, the solutions of uy and wy are given in the following Fourier-Bessel series.

2
up(r,2) = § & & 5o (Bnyom) -cosamz-J3 (Bar), )
w(r,2) = & B ee2®@om) + § 593" (Bn,om) o (Bar) } sinanz ()

where Np = Ro2{J; (BnRo) }2/2

For far field II, in accordance with the assumption that the horizontal
component of the dilatational strain is neglected, the following equation instead
of Eq.(1l) is solved.

1
s (ru) =0 . @))
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The solution of the horizontal displacement in the r direction ull is given as
12 c
;-Eé uz(OLm)COSOLmZ N (8)
where ug(am) is an unknown constant. In Eq.(2), under the consideration of
Eq.(7) and the following boundary conditions that
1. the vertical displacement wry is zero at the base (at z=0),
2. wry converges to zero as distance r tends to infinity,
3. normal stress Oz in the vertical direction is zero at the surface of the
soil layer (at z=H),
the solution is obtained as follows.
2
2 Ko (9m?¥) wg . Ky Vi
= £ = W s—-—, ;sinGipz
wII(r,z) L {Ko(quo) L 2 mZ (9

3

where qf = (aé—K%)-(A+2u)/u » Ky = pw?/(A+2y) and wyp is an unknown constant.

upp(r,2) = 2u(z) =

Concerning to the soil layer, nine unknown constants are included.

Analysis of the tank Similar to the solution of the soil layer, the theoretical
solution of the elastic circular plate, cylindrical shell wall and liquid are
obtained in the form of the Fourier and Bessel series.

The equation of motion of the plate which is subjected to the liquid pressure
pp and the contact stress 09 of the soil layer is written as follows.

V22w = Bl; { pphpw? (wptwg) + pp = 0o 5 (10)
where Dp is the flexural rigidity ; Dp = (l+Ep-i)Ephp3/12(l—vp2). The relative
displacement wp of the plate is expressed as

=L 420 Lo . 11
wp(r) N wp(0) + % Ng wp (Yg) " Jolygr) (1)
where Yy take zero (for n=0) and positive roots of Ji(YgRo)=0, Ng=ro?{Je(YgRo)}%2

The equations of motion of the shell in the radial and the vertical di-
rections are

Bs . cee
- ?Zé(verWS + ug) -Dgus + pghgw?us + ps =0 , (12)

Bg

o (Tows™ 4+ wus®) + pshsw® (wetwg) = 0, (13)

where pg is the liquid pressure, Bs = (1+£g-i)-Eshs/(1-v2) and Ds = Bs-hs?/12.
The solutions of the horizontal and vertical relative displacements ug and ws
of the shell are expressed as

ug(z) ﬁ% { u:(ﬁ) + 2 ? ug(aj)cosajz 1, (14)

(15)

i

wg(z) ﬁ%—; wg(aj)sinajz s
J

where oj = jm/Hs .

Under the assumption of the ideal liquid, Laplace’s equation given in terms
of potential function ¢ becomes the governing equation. The solution is obtained
in the similar form of the soil layer I and is expressed in terms of ¢0C.

The imaginary functions (WPO, us®, wgS and $°C) of the plate, shell and

liquid include 13 unknown constants. All the 22 unknown constants of the soil
layer and the tank can be determined by solving a set of simultaneous equatioms.
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NUMERICAL RESULTS AND DISCUSSION

The soil layer subjected to the uniform excitation qo-elWt (at z=H, r<ry) is
described first. The frequency response curves of vertical displacement, wrou/P
versus ag, (w is average response in r £ rg, P = qo~ﬂr02 and ao is the non dimen-
sional frequency of ag = ro-w/Vs) are shown in Fig.2. (where v=1/4 and H/ro=2)
Difference of the results due to the different positions of the imaginary boundary
(Ro/xro = 3, 4, 6 and 10) may be seen. Considering that converged results are ob-
tained when larger value is taken as Ry/ro = 6 and 10, Ro/ro = 10 is taken in what
follows. For a case of uniform excitation in a square zone (2Bx2B), comparing
the compliance function (obtained by taking equivalent radius of 2B/vmW) with the

others in Ref.3, this analysis method is confirmed to be valid.

Flexible plate subjected to the uniform excitation qg- .elwt on the soil layer
is discussed next. The distribution of the vertical displacement W= (w+ Wg)/W8
and the contact stress Oy at the interface of the plate and the soil layer at
different frequenc1es and flexural rigldlty are shown in Figs. 3 and 4. (Concrete
plate ; Ep—2X10 t/m?, vp=1/6, pp-g=2.4t/m®, £p=0.1. Soil ; p=9000t/m?, v=1/3,
p-g=2t/m%, £=0.2). Where the results are obtained at the frequencies of b; = 1,
3.2 and 5 (b1 = £/f;, f1 is the first natural frequency of the soil layer and
f1 = Vp/4H) for such a stiffness ratio of Dp/uro = 2, 100, 500 (x10~5) which
corresponds to hp/re= 1, 3.7, 6.4 (x1072). As the frequency becomes high, it is
observed that the displacement distribution becomes wavy. However, when the
stiffness ratio is large, the wavy distribution tends to be smoothed and become
uniform. Contact stress is shown in Fig.4. When the rigidity of the plate is very
small, slight stresses are induced in the plate and the distribution of the con-
tact stress retains almost the same to that of the excitation (uniform).
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Fig. 2 Vretical Displacement Responses for Different Ry/r,
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While in case of relatively large stiffness ratio, contact stress is concentrated
at the edge and the distribution approaches to Boussinesq’s distribution obtained
for the rigid plate.

Finally, the response of the soil-tank system subjected to the input excita-
tion at the bedrock is discussed in comparison with the responses of free field
and fixed tank (tank whose lower edge is clamped on the rigid base). Data in this
analysis are as follows. Young’s modulus of the tank (steel) : Ep=Es = 2x107t/m2,
thickness of the side wall : hs/ro = 1/1000 and the other data are tabulated in
Table-1 and three cases of soil-tank system considered here are shown in Table-2.

Table-l Data Used in the Analysis

Table-2 Cases for Soil-Tank System

p-g(t/m?) v £ | dimension .
t
soil| 2.0 1/3 | 0.2 |H/ro =2.0 Case | u(t/m’) | Vs(m/sec) | hp/xq
plate 7.86 1/3 | 0.1 |re/ro=1.0 1 9000 210 1/1000
Tank | “Uo11|  7.86 | 1/3 | 0.1 |Hs/ro=1.0 2 9000 210 1/100
liquid 1.0 - - | L/xe =0.5 3 2000 99 1/1000

Frequency response curves of the vertical displacement response at the sur-
face of the soil layer are shown in Fig.5. 1In case of free field (Fig.5-a), reso-
nant peaks appear at by = 1, 3, 5. In cases 1, 2 and case 3 (Fig.5-b and 5-c),
it is observed that the first resonant peak corresponding to the first natural
frequency of the soil layer is maximum and the responses of amplitude and phase at
the center and the edge (at r=0 and ry) becomes different in higher frequency
range of by > 1. In cases 1 and 2, the second peak appears around at b; = 2.3 to
3.0 which corresponds to the first resonant frequency of horizontal displacement
of the fixed tank (Fig. 6-a ) and the second resonant frequency of the soil layer.
In case 3 of softer ground (Vs = 99m/s), such a resonance is not appeared (around
at b; = 4.6) in this figure.

Frequency response curves of the horizontal displacement ug = ug/wg of the
side wall of the tank near the lower edge (at z = Hs/10) are shown in Fig. 6-a
(case of a fixed tank) and in Fig. 6-b (cases 1, 2 and 3). The first resonance"
of the cases 1, 2 and 3 corresponds to the first resonance of the vertical dis-
placement of the soil layer. The second resonance of cases 1 and 2 corresponds
to the resonance above mentioned, where the peak amplitude becomes smaller than
that of the fixed tank, and the response of case 3 of softer ground is the
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Fig. 5 Frequency Response Curves of Vertical Displacement
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smallest among these cases, which are suggested to be reduced by the effect of
the radiation damping expected in b; > 1. Fig. 7 shows the distribution of the
horizontal and vertical displacements wp and Us of the bottom plate and the side
wall at four frequencies. Characteristic profile varied with frequency can be
seen.

CONCLUSIONS

In the analysis, the soil layer is treated by dividing into two parts of
near and far fields and the converged and accurate solution can be obtained when
R /rg 2 6. From the numerical results of tanks with deformable bottom plate, the
followings are observed. In case of the soil~tank system, both resonances of the
free field and the fixed tank appear. Vertical displacement of the plate becomes
maximum at the resonant frequency of the soil layer (at b1 = 1) and at the higher
frequency, the motion of the plate becomes different in phase and amplitude at
each point.  When the soil layer is relatively soft, the response of horizontal
displacement of the side wall of the tank becomes small due to the effect of the
radiation damping at higher frequency of b; > 1.
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