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SUMMARY

Two moments of inertia, positive and negative bending, develop in composite
beams of a frame during earthquakes. In this study, we represented these two
moments of inertia in composite beams by a single equivalent moment of inertia.
In the numerical analyses, the equivalent moment of inertia was calculated by
multiplying an equivalent coefficient by the moment of imertia of a steel beam in
a composite beam. Analyses of 4- and 7-story frames were carried out using these
equivalent coefficients and exact stiffness values of composite beams. The
results were compared and we found that both results were in good agreement.

INTRODUCTION

Both positive and negative bending moment regions develop in a composite
beam when it receives bending moments during earthquakes. Thus, the moment of
inertia in a beam can be different in two bending moment regions of a beam. In
the structural analyses of steel frames which consist of composite beams, in many
cases, the elastic stiffness of the composite beams is not represented by the
stiffness of a beam which has undergone changes in its cross section, but by the
elastic stiffness of an equivalent steel beam. When calculating the equivalent
elastic stiffness, the moments of inertia are approximated by the following four
values: 1) moment of inertia of composite beams which consist of a positive
bending region only, 2) average value of the positive and negative moments of
inertia, 3) moment of inertia of a steel beam with a multiplication coefficient
to adjust the value of the moment of inertia, and 4) moment of inertia of the
steel beam without a concrete slab. In the present paper, we accurately
represented the moment of inertia of a composite beam using method 3) of the
above-mentioned four values.

In the actual calculation process, the exact elastic flexural stiffness of
various composite beams was calculated using beams which had undergone changes in
their cross-sectional areas. Then, the equivalent coefficients (the coefficient
to be multiplied by the moment of inertia of steel beams) of composite beams in
multilayer and multispan balanced frames were calculated for windward and leeward
composite beams as well as interior composite beams, As examples of the
numerical analyses, a 4-story 4-span frame and a 7-story 6-span frame were used.
We compared the results obtained by the equivalent coefficients with those
obtained by the exact elastic stiffness of composite beams. In addition, the
results from the equivalent coefficients were compared with the results obtained
by the D-method (Ref. 1), in which exact stiffness was used.

VI-59



ELASTIC FLEXURAL STIFFNESS OF COMPOSITE BEAMS

As shown in Fig. 1, the bending moments applied to the two ends, A and B,
are designated M;p and Mg, (=aM B), and the end rotation for each is defined by
6, and GB, respectively. The e%astic flexural stiffness (Refs. 2 and 3) can be
sﬁown by eq. (1)

[ Myp/ My } . { ki kg J { eA/sepJ 0
Mpa/ My kop ko 65/ 8

where, Mp: full plastic moment of the steel beam in a composite beam sep:
SMpL/6E;i, E I: flexural rigidity of the steel beam in a composite beam.

The elements in the stiffness matrix, ki~(i,j=l,2), were calculated by
s lvin§ the equilibrium differential equations og the composite beam, dN/dZ=0 and
d“M/dZ*=0 using the finite difference method. Here, N represents the axial force
and M represents the bending moments. The following assumptions were used in the
analysis: 1) There was no slippage between the steel beam and the concrete slab
(thus, Navier's assumption has been maintained). 2) Concrete is effective in the
compressive region and steel bars are effective in the negative bending region.
3) Young's modulus ratio of steel to concrete was set as 14, 4) The cross
section of the composite beam was divided into 5 to 8 elements, and N and M were
calculated based on the resultant force exerted on the center of each element.
The ratio of the beam height to the flange width of steel beams was set between 2
and 3, thus, H-400x200x8x13, H-500x200x10x16 and H-600x200x11x7 were used. The
thickness of the concrete slabs used in the analysis was 10 cm and the width was
determined so that the ratio of a positive moment of inertia of composite beams,
I,, to the moment of inertia of the steel beams, sls (B=I,/_I) became 1 to 3.
The steel bar used was DIO @200 and the covering depth was .5 cm.  In addition,
the moment ratio of both ends, a=MBA/M g was O to -1.0.

Using H-400x200x8x13 as an examﬁ&e, we presented the relationship between
the elements of the stiffness matrix, k.., and the moment ratio of both ends, O,
in terms of the ratio of the moment ogi&nertia, B, in Fig. 2. As can be seen
from the figure, when -1.02 o = -0.4, regardless of the moment ratio @, all
elements, k;., can be considered to be constant . When the values of k.., are
calculated iﬂ terms of the ratio of the moment of inertia, B, they can be shown
as follows:

[ ki Kpo ] . [0.578 +0.10 0.168 + 0.17 .

ko kop 0.168 + 0.17 0.148 + 0.52
Similarly, stiffness matrices were obtained for H-500x200x10x16 and H-600x200x11
x7 and these elements, kij, can be represented by eq. (2) when ~1.0s a = -0.4.

EQUIVALENT MOMENT OF INERTIA OF COMPOSITE BEAMS IN A BALANCED FRAME

We studied the behavior of the multilayer and multispan frame shown in Fig.
3 under the condition of an earthquake. The moment of inertia of a composite
beam in a frame consists of a positive moment of inertia and a negative moment of
inertia (hereafter, this type of frame will be called a "composite beam frame').
We consider the steel frame shown in Fig. 4, where the moment of inertia of the
composite beam of the same frame shown in Fig. 3 was replaced by ¢ times the
moment of dinertia, sl (hereafter this type of frame will be called an
"equivalent steel beam frame"). ¢ was obtained by equating the horizontal
stiffness of two corresponding columns of two different types of frames; this
value was designated as the equivalent coefficient. As shown in Fig. 4, the
equivalent coefficients at the windward, interior and leeward sides were
designated as ¢+, ¢ and ¢~, respectively.
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Interior Composite Beam in the Intermediate Layer Here we calculated the
equivalent coefficient ¢ for a composite beam, AB, which is the intermediate
layer shown in Fig. 3(b). When we calculate the normalized horizontal stiffness
of column AC in the composite beam frame of Fig. 3(b) and in the equivalent steel
beam frame of Fig. 4(b) of the intermediate layer using the following
assumptions, we obtaln eqs. (3) and (4). The assumptions are as follows:

Rotation angle: A = SB = 6y = Og, Sway deflection: Ry = Ry AD, Relative
stiffness ratio: (%he relative stiffness ratio of a steel 'beam in a
composite beam is f 0.) éomposite beam: AB and AE are identical. Then,

(—)op = ————— (3, (—)gp = ————— (4)
r Zki. + 2k, r 20 + k)¢
where Zk. 1 +kgy and q and r are the shear force of a column and
sway defiéctlon norma%l % by ﬁ /h (h: story height) and 8, respectively. The

suffixes CF and EF indicate the g omposite beam frame and an equivalent steel beam
frame, respectively. By equating eqs. (3) and (4), the equivalent coefficient ¢
will be given by the following equation:

o = Ik; /2 ()

Windward Composite Beam in the Intermediate Story We now obtain the equivalent
coefficient ¢7 of a composite beam, AB, in the intermediate layer in Fig. 3(a).
When the normalized horizontal stiffness of column AC at the windward side of the
intermediate layer in Figs. 3(a) and 4(a) is calculated using the following
assumptions, we obtain eqs.(6) and (7). The assumptions are: Rotation angle: 0,=
GC=6D, 6B=P GA, Sway deflection: RAC=RAD’ Relative stiffness ratio: KAC=kAD' Then,

+
(k11 + Pk 2K

(—cr = (6)
q 6%(2/3 + 1/3P%) 2k,
r o*(2/3 + 1/3P%) + 2k,

By equating eqs. (6) and (7), the equivalent coefficient ot will be

3(kqp + PYkyy)
o = (8)
2 + Pt .

The ratio Pt of B to 6, will be calculated using moment equations at joints A
and B and the assumptions listed below. Then, eq. (9) will be obtained as
follows and the assumptions are: Rotation angle: 0Op GF = 6y = O sway
deflection: Ry =Rpp Relative stiffness ratio: ko = kyp = kgp = kpy, Composite
beams : AB and BG are identical. Then,

non

ki1 = ko7 + 2k
11 21 AC
pt= (9)
kll + k22 + ZkAC .

Leeward Composite Beam in the Intermediate Layer The same procedure used for
the calculation of the equivalent coefficient for the windward composite beam can
be applied to the calculation of equivalent coefficient of a leeward composite
beam, AB, at the intermediate layer in Fig. 3(c). The calculated results of ¢~
and p~ are shown in Table 2.

A similar procedure, which was applied in the above calculatlon, can be
applied to the calculation of equivalent coefficients ¢+, ¢ and ¢~ for the
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composite beam, AB, in the top and ground layers. The assumptions needed to
calculate the equivalent coefficients, ¢" and ¢~ are listed in Table 1 and the
equivalent coefficients and equation for P" and P T are shown together in Table 2.

EXAMPLES OF FRAME ANALYSIS

Analysis  To study the reliability of equivalent coefficients, frame analyses on
4-story 4-span, and 7-story 6-span frames were carried out. In both frames, each
span was 6.2 m and the height of the lst floor was 3.8 m, while the height of the
other stories was 3.6 m each . The ratio ,R, of the positive moment of inertia
of a composite beam, I+, to that of the steel beamn, SI, and the equivalent
coefficients for each layer are shown in Tables 3 and 4.  The horizontal forces
applied to the floor levels of each story were determined by adopting the A;
distribution of the JaEan Building Code. The vertical floor load in these
calculations was 0.8 t/m“ for each floor, The direct stiffness method and the D-
method were used in the numerical analysis.

Results The story displacement and story stiffness for a 4-story frame are
shown in Fig. 5. These values for the 7-story frame are shown in Fig. 6. In
these figures, the analytical results of steel frames without concrete slabs
(equivalent to ¢*, ¢ and ¢~ =1.0) are also shown. The dot-dashed line represents
the results from the direct stiffness method. Since the results obtained from
the exact stiffness and from the equivalent stiffness are almost identical, the
two results are represented by the dot-dashed line. In the case of the D-method,
(the dotted line), the two results are also represented by the line. Figures 7
and 8 show the bending moments and shear forces for the 4- and 7-story frames.

CONCLUSIONS

In this paper, we represented the moment of inertia of a composite beam,
which consists of a positive and a negative bending moments of inertia, by a
single equivalent moment of inertia of a steel beam. In order to obtain the
equivalent moment of inertia, an equivalent coefficient, which is a factor to be
multiplied by the moment of inertia of a steel beam, was introduced. The
equivalent coefficient of composite beams for the windward, interior and leeward
sides in the frame are shown in Table 2. From the numerical analyses of 4-story
and 7-story frames, the following conclusions have been obtained:

1) The story displacement and story stiffness calculated by equivalent
coefficients agreed well with the results obtained from the exact stiffness
matrix. This conclusion is valid in the direct stiffness method and the D-method.
2) Regarding the bending moment distribution, shear force distribution of
columns, the results obtained from the equivalent coefficient method agreed
fairly well with those obtained from the exact stiffness matrix. However, there
was some minor discrepancy for the columns next to the exterior.

3) In the 7-story frame, there was basically no difference between the values
obtained from the direct stiffness method and the D-method. In the 4-story
frame, some difference was found between the two metheds. For instance, in the
case of sway deflection (not shown in the text), the largest discrepancy between
the D-method and the direct stiffness method was that the D-method values was 1.2
times as large as that of the direct stiffness method values.
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Table 1 Assumption for Obtaining Equivalent Coefficient ¢ and p

Beam Story Assumption (¢ ,0% 07 Assumption (p*,p7)
fa=0p=6f¢
Top (8a/6c)cr=(0a/OclerF
Interior Composite Beam : AB=AE
Composite 0a=08=6¢
Beam Ground (6a/8)ce=(8al B0 )er
(Fix) (R1/R2 er=(R1 /ReJer
Composite Beam : AB=AE
geg/ecgcﬁgeg/ecgep Mac=Mca , Mau=Mus
Windward Top B8a/88)cr=(6n/ 88 )krF kac=kay
and Os=p* Oa Composite Beam : AB=BG
Leeward (8ar@03cr=(0a/ Goder Mac+1/3+Mas=0
Composite | ground 8a/08)ck=(0a/ 88 eF Men+1/3+(Msa+Mec )=0
Beam (Fix) fs=p* Ba kac=ken
(Ri/R2der=(R1/Re ek Composite Beam : AB=BG
CF: Composite Beam Frame EF: Equivalent Steel Beam Frame
Table 2 Equivalent Coefficients ¢ and p
Beam Equivalent Coefficient pt, p~ k
Interior
Composite o= k11+k12+k21+k22
Beam 2
Windward +ot -K21H =
Composite | ¢+ = i%’g_ﬁa pt= :i:_ﬂg;T:: k=kpc for top story
Beam k=2kac for ground
(L:gewarqt o = 3(k22+p7k21) __ k32-k12+k and intermediate
ponPostte T o P= Kirwazk story
Table 3 ¢ and 8 for 4-story Frame Table 4 ¢ and B for 7-story Frame
L ?
Story 8 Story B
Windward|Interior| Leeward [ (I1+/s1) Windword|Interior| Leeward | (1+/s1)
4, Top(R) 1.56|1.38(|1.20]| 1. 75 Top R 1.46|1.30(1. 15| 1. 60
Ground(2) , 3 [1.83[1.567|1.31] 2. 11 6,7[1.45|1.30(1.16( 1.60
1
Concrete Slab ntermediate | 4 , 6| 1. 63 |1. 43| 1. 23| 1. 84
Z 7 Z 4 MBA= 3 1.81[1.65(1.29]| 2.08
MAB, ] \0<MAB Ground 2 1.80|1.66|1.29]| 2.08
H-Beam / z
A L A= B
— i
Fig. 1 Analytical Model of a Composite Beam
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Fig. 2 Flexural Stiffness Elements of Composite Beams
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Fig. 6 Analytical Results of 7-Story Frame

Fig. 8
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(b) Shear Force

7-Story Frame



