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SUMMARY

This paper describes the dynamic characteristics of stress—ribbon bridges
obtained by experiments and theoretical analyses. It is revealed that the
first natural frequency of the stress-ribbon bridge with a larger sag(20cm) is
higher than one of the another (10cm). It is desirable that the amount of sag
is designed to be larger in order to improve the dynamic characteristics of the
bridge. The experimental results require us to develop a theoretical analysis
taking account of the change of span length, caused by the change of contact
length between stress-ribbon and saddle-like shaped support in the vibration.

INTRODUCTION

A stress-ribbon bridge is a very simple structure built by spanning of
cables and lining them with reinforced concrete to provide the bridge with
rigidities. Usually, the bridge of this type, which was proposed by Dr.Ulrich
Finsterwalder in 1958 (Ref.l), does not require main towers, hangers and
stiffening girders or frequent maintenace works. However, there are few
bridges constructed for pedestrians in Japan and are little more than 10 in the
world, because of less information on the dynamic characteristics of the
bridge. Generally, stress-ribbon bridges have a low natural frequency, because
the stress-ribbon is thin in comparison with its span length and has a low
rigidity. Therefore, resonance may occur, if the natural frequency is  the
same as the frequency of walking behavior. The object of this paper is to in-
vestigate the dynamic characteristics of the stress-ribbon bridge, by model
tests and theoretical analyses.

VIBRATION TESTS

Experimental bridges We made one-fifth models of a stress-ribbon bridge with
span length of 50m, in order to investigate the effect of sag on the dynamic
characteristics. Namely, we provided two experimental bridges with the same
span length L=10m, width of 0.7m, and different sags of s=10cm (Type-l) and
s=20cm (Type-2), as shown in Fig.l. Although we decided the thickness of the
stress-ribbon as 10cm from the restriction of construction, this size may be
rather a little thick for its span length. 2

Conditions for design are as follows: inteng&ty of live load=350kgf/m
(=245kgf/m), drying shrinkage of concrete=200x10 ~, creep coefficient of
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oncrete=2.6, range of temperature change= 20°c, allowable tens%le force per a
gable(T12.4):9780k§f(ultimage tensile strength=16300kgf), and its relaxation
coefficient =0.05. The cables of 8 in Type-1 and 5 in Type-2 were used, and
their horizontal tensile forces were measured as Ho=22.6tf(Type-1) and
Ho=11.2tf(Type-2) when their own weight was loaded. Photo.l1 presents the ex-
perimental stress-ribbon bridges (Ref.2).
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Fig. 2 Arrangement of Accelerometers
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Photo 1 The Model Stress-Ribbon
Bridges for Experiment
(Left:Type-1, Right:Type-2)

Method of experiments By means of vibration machine, vibration tests were
conducted in vertical direction. In order to measure the vertical displacement
of the bridge, we set up accelerometers and deflection seismographs at five
points (P-1~P-5) having equal spaces on the stress-ribbon, as shown in Fig.2.
We obtained the resonance curves about four stages of vibration force
(150,300,450 and 600kgf), and estimated the damping constants.

FORMULA FOR ANALYSIS OF STRESS-RIBBON BRIDGE

Generally, the equation of motion for the system with many degrees of
freedom can be written as follows:

FMX+X=0, (1)

where, F=flexibility matrix, M=inertia matrix, X=acce1eration vector,
¥=deflection vector. Putting X= ¢el®t | Eq.(1) can be transformed as follows:

[1-w?Fu|=o0, (2)
where I=unit matrix. Giving F and M, natural circular frequency ® and vibra-
tion mode ¢ can be obtained.

Since the experimental stress-ribbons are rather a little thick for their
span length, as above mentioned, the effect of flexural rigidity cannot be dis-
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regarded. The flexibility
matrix F can be obtained from

the following deflection } L *i
theory. I
Now,assume that a stress- 33 3 4 ¥ 3 q
ribbon bridge with span length \ Vo
L forms a parabolic curve and Tr == 42 A
that the cable is in horizontal HOO Ehg.._ - _..j:-s... _3 ﬁo
equilibrium with Ho, when its
own weight q is loaded, as L @ o @ 0‘
shown in Fig.3. By loading a \V/ == T~ = Ho =q =qL ( L)
concentrated load P at the dis- O 2 »9 cosa> © 8 8 g

tance, z, from the origin, the

horizontal force changed into Fig. 3 Equilibrium of Stress-Ribbon
H.. The deflection of the

s%ress—ribbon can be calculated

from the following equation,

0sxSz
PL[x z sinh(k(L-z))
y=——(1-—) - ———————sinh(kx)
Hl L L kL sinh(kL)
AH qL? | cosh((KL/2)=kx) 1 x(L-x)
- — - +
HH) K2L2cosh(kL/2)  Kk2L2 2t |,
z<xgL
PL|z b4 sinh(kz)
yo=—|=(1-=) - ——" sinh(k(L-x))
H1 L’ kL sinh(kL)
AH qu cosh((kL/2)-kx) 1 x(L-x)
- — - +
H B | k*LPcosh(il/2)  kPL? a? |, (3)

where, H=H.-H , k2=H1/EI, E=Young's modulus of stress-ribbon, I=moment of in-
ertia of stréss-ribbon.

Therefore, if H, is given, the deflection can be obtained from Eq.(3).
Regarding the change o% temperature, we can calculate the increment of the

horizontal force H and H., from the following equation,

17
AH 52 16 32
—L(1+8—=)+ aeL(1+—-—---—§-)
EA L 3 L
PL 8s| z z 1
=i | —( 1 - —) ——?2——————{sinh(kL) - shinh(kz) - sinh(k(L—z))}
Hl L 2L L k“L” sinh(kL)
AHL 8s 2 12 24 kL
- —(—) 1———2—+ tanh( — ), (4)
12H, S Y 2

where, ¢ =coefficient of liner expansion, 8=change of temperature, A=sectional
area of stress-ribbon. From Egs.(3) and (4), we can obtain F matrix.

VI-521



RESULTS AND DISCUSSION

Figs.4(a),(b) and (c) show the resonance curves at the point P—? generated
by the vibration forces of 300, 450 and 600kgf(at 10Hz), respectively. The
resonance curves of Type-1 and Type-2 are designated by symbol§ e and A& ,
respectively. Fig.5 shows the natural frequencies correspondlng to the change
of vibratioh forces and the vibration modes. From this figure, 1t 1S seen that
the frequency of the 1st— axis-symmetric mode slightly incrgases in case of
large vibration force, like as hardening type. The reason of this mat;er may be
that the contact length between the stress-ribbon and saddle-like shaped
support gets longer when the stress-ribbon moves down, namely, the span length
is relatively shortened. The frequencies of the l1st-point-symmetric and 2nd
axis-symmetric modes significantly decrease as the vibration forces get
stronger. Although a cable has a higher frequency as the tensile force get
stronger, it is seen from Fig.5 that the frequency of lst-axis-symmetric mode
of Type-2, having a relatively large sag, is higher than one of Type-l. This
may be caused by the difference of their rigidities owing to the different
amount of sag.
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From Fig.4, it can be seen that the amplitude of the lst-axis-symmetric
mode is the largest in both bridges. While, in the case of Type-l, the
amplitude of the lst-point-symmetric mode is smaller than one of the 2nd-axis
symmetric mode, although we presupposed that the amplitudes became smaller in
order of modes; lst-axis-symmetric, lst-point-symmetric and 2nd-axis-symmetric
modes. The resonance curves of lst-point-symmetric and 2nd-axis-symmetric modes
show the shape of softening type that immediately raise at their own
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resonances. Fig.6 shows the damping constants obtained from the above curves.

Fig.7 shows the relationship between natural frequencies f and the ratio
of sag to span, s/L. From this figure, for Type-1(s/L=0.01), the lst-axis-
symmetric, lst—point-symmetric and 2nd-axis-symmetric modes of vibration ap-
pear in order of the natural frequency. The order of these modes is common
among the results by the theoretical analysis, the calculation using the
flexibility matrix obtained through the experiment, the experiment by using a
vibration machine, and the experiment by the jumping of one person (70kgf) at
the middle of span. Also, their natural frequencies are well in agreement as a
whole.
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Fig. 7 Influence of Ratio of Sag to Span on Natural Frequency

For Type-2 (s/L=0.02), the order
of modes of vibration derived from the
experiment using the vibration machine
agree with the one of Type-l. However,
in the theoretical analysis, lst-axis-—
symmetric and lst-point-symmetric
modes occur in reverse order. Their
frequencies are different from ones of
the experiment. While, the natural
frequency of lst-axis—-ymmetric mode
agrees with ones obtained from the ex-
periment by jumping of one person and
the calculation by using the
flexibility matrix estimated through
experiment, as a whole. Anyway, for
Type-2, there are differences of the
natural frequencies and modes between Fig. 8 Deflection Curves
the theoretical and experimental
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results. These are caused by the difference of the deflection curves derived
from the theoretical analysis and the experimental ones, as shown in Fig.8,
which shows the deflection curves obtained from Eq.(3) and the experiments
when the concentrated load of 70kgf is loaded at the middle of span. It can
be presumed that the span length in the theoretical analysis is different from
one in the experiment, due to the change of the contact length between the
stress-ribbon and the saddle-like shaped support. Namely, although the span
length is significantly changed in reality, it is assumed to be constant in the
theoretical analysis,

CONCLUSIONS

The dynamic characteristics of stress-ribbon bridge are influenced con-
siderably by the amount of sag, tensile force of cable, and the length
of contact between the stress-ribbon and saddle-like shaped support. Espe-
cially, it is necessary to develop a theoretical analysis taking account
of the change of span length caused by vibration.
The other results are summarized as follows:
1)It is obtained that the first natural frequency of the stress-ribbon bridge
with a larger sag(Type-2:20cm) is higher than one of the another(Type-1:10cm)
from our experiments. This is also revealed by the theoretical analysis
although the vibration modes are different.

2)It is desirable that the amount of sag is designed to be larger to improve
the dynamic characteristics as long as pedestrians do not feel fatigue to
walk.

3)It is revealed that the third natural frequency decreases correspondingly to
the amount of sag, by the experimental results and theoretical analysis.

4)The experiments give us interest resonance curves such as the shape of hard-
ening type for the first natural frequency and the shapes of softening type
for the second and third natural frequencies, respectively.
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