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SUMMARY

Dynamic response analysis is performed of a five-span continuous rigid-frame
steel bridge with V-shaped legs standing on two reinforced concrete piers. Three
different analytical matrix methods for determining the dynamic characteristics
of in-plane vibrating rigid-frame bridges are presented. The numerical results
computed by using the lumped, consistent, and continuous mass methods are given
in tabular form, and their accuracy is evaluated. Also, the Square-Root—of-Sum-
of-Squares (SRSS) method and the Complete Quadratic Combination (CQC) method are
used for seismic analyses that combines modal maxima. The calculation results
are compared with those resulting from a time history response analysis.

INTRODUCTION

Over the last three decades significant research has been conducted in the
field of earthquake engineering to better understand the performance of structures
during strong earthquakes. Numerous rigid-frame bridges have been designed
recently for use as highway bridges in earthquake-prone areas. It is thus impor-
tant to take into account the structurally complex superstructures that charac-
terize rigid-frame bridges with V-shaped legs. Because of the long spans
typically involved, their superstructures are relatively flexible both vertically
and transversely. The seismic response of rigid-frame bridge structures is
usually dominated by both lower and higher mode effects. In addition, because of
large distances between major piers or supports, large out-of-phase displacements
may occur, and as a consequence analysis should be based on multiple-support
seismic excitations. Accordingly, when designing rigid-frame bridges to resist
earthquake forces and deformations, it is required that the natural frequencies
and mode shapes of vibration be determined accurately.

In this study, a free vibration analysis of a five-span continuous rigid-
frame steel bridge with V-shaped legs (see Fig. 1) is performed with three
different mass matrix methods. The natural frequencies computed by the lumped,
consistent, and continuous mass methods are given in tabular form, and the appli-
cability of an approximation method is discussed. Because the structural geometry
of the rigid-frame bridge shown in Fig. 1 is asymmetrical with a gentle longitu-
dinal gradient of 2.600%, several of the natural frequencies are closely grouped
and the mode shapes are complex. The Square-Root-of-Sum-of-Squares (SRSS) method
and the Complete Quadratic Combination (CQC) method are applied in seismic
analysis for combining modal maxima. Lastly, the results calculated by both the
SRSS and CQC methods are compared with those of the time history response analysis
and their applicability dis investigated.
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NATURAL VIBRATION ANALYSIS

From an analytical standpoint as well as an idealization of structures, it
-enient to divide the coordinate system into two different basic types as
in Fig. 2. The first type is a distributed coordinate system [or distrib-
parameter system (Refs. 1,2)], which is applied to structures'whosg

rties are continuously distributed in space, and to problems in which the

es are distributed. In this case, the basic relation between forces and
lacements for a beam segment subjected to axial and flexural vibrations is

ed by using general solutions of differential equations of motion. The
equaticns lead to a dynamic flexural-stiffness matrix, which is a fuanction
the natural circular frequency of vibration. This approach results in exact
solutions and is called the eigen stiffness matrix method (Refs. 3,4) or the
continuous mass method (Ref. 5).

The second type of mass system to be distinguished is a discrete coordinate
vstem [or lumped-parameter system (Refs. 2,6)], which defines forces and
isplacements at a set of discrete points in terms of components having specified
directions. The analytical procedure for this type can be greatly simplified as
an eigenvalue problem because the inertia forces are developed only at these
points. In the framework structures, the lumped mass matrix (Refs. 1,4,7) is
derived as a diagonal matrix by applying half the mass (and it's associated mass-
moment) of each beam to the appropriate nodal point. Moreover, the mass
influence coefficients are evaluated by a procedure similar to that used to
determine the static stiffness coefficients. The resulting matrix is called the
consistent mass matrix (Refs. 1,7), and it contains many off-diagonal terms due

to the effect of mass coupling.
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DYNAMIC RESPONSE ANALYSIS

In designing earthquake-resistant structures, the maximum value of the
response of structures to earthquakes is the most significant quantity. The
dynamic equilibrium equation for a structural system subjected to a ground
acceleration 4i(t) is written as follows (Ref. 8):

MI{ET +[C1{0} + [RI{U} = {MoKi(t) @

in which [M], [C], and [K] are the mass, damping, and stiffness matrices,
respectively. The relative displacements, velocities, and accelerations are
indicated by {U}, {0}, and {U}. The column vector {Mo} contains the components
cf mass in the x- and y-directions. The solution {U} of Eq. (1) is found by the
mode superposition

{U} = [e]{¥} (2)

in wh::Lch ;Q] is the m?dal matrix, and {Y} represents the normal coordinates. By
iubstltutlng Eq. (2) into Eq. (1) and premultiplying by the tramspose of [¢]
Eq. (1) becomes ’

T . .
(o] MI[e1{¥} + [e17[CI(o14} + [a1T[RI[01(Y} = [o]T(Mo}u(t) 3
For propo;tional damping, the mode shapes have the following properties:
P _ T 2
‘éi} [M]{@i}—mi, {Qi} [K]{Qi} =wm,, {@i}T[C]{CPi} = 2z;0,m, (4a-c)

in wl:u.ch {¢.} is the i-th column of [¢] representing the i-th mode shape, m, is
the :}-thmod{'al mass, w. is the i-th natural circular frequencies, and ¢ J".s he
damping ratio for modé i. Due to the orthogonal properties of t,:he mod% shapes
Eq. (3) reduces to a set of uncoupled equations in which the differential pess
equation Qf motion has the same form for both the distributed coordinat

and the discrete coordinate system: inate systen

. . 2 s
Y+ Zz;iini+miYi= piu(t) (5)
and
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= (2,1 (Mo} /m, ®

in which p, is the participation factor for mode i. The equation (5) for the
i-th mode Is independent of those for all other modes. Therefore, it may be
integrated directly to yield the time history solution [the normal displacement
Y.(t)] for normal coordinates. The total structural displacements {U} are
obtained from Eq. (2).

To evaluate the earthquake response of Multi-Degree-of~Freedom (MDOF) systems
at any time, t, involves the computation of the Duhamel integral at that time for
each significant response mode. Hence, the evaluation of the maximum response
(displacements and forces) requires that each modal response be computed in this
way for each time during the earthquake history. This obviously constitutes a
major computation effort and makes an approximate analysis based on the ground-
motion response spectra an attractive alternative. A number of different
formulas have been proposed to obtain a more reasonable estimate of the maximum
response from the spectral values. The simplest and most popular of these is the
Square-Root-of-Sum—of-Squares (SRSS) method; the maximum displacement response of
each mode is given below (Refs. 1,9):

_/ 2

Ui,max'— § (Qinj,max) ™
in which Y, is the maximum response of each mode.

On thé’o%ﬁer hand, the Complete Quadratic Combination (CQC) method requires
that all modal response terms be combined by the application of the following
equation (Ref. 8): For a typical displacement, Uy

ST

RS R AT LIELN 8)
in which u 1 is a typical component of the modal displacement response vector.
In general, the cross-modal coefficients p.. are functions of the duration and
frequency content of the loading and of theJnatural frequencies and damping
ratios of the structure. If the duration of the earthquake is long compared to
the periods of the structure, and if the earthquake spectrum is smooth over a
wide range of frequencies (for a white-noise input), it is possible to approxi-
mate the coefficients by the following (Refs. 8,10):

8/(EE;) (g + v )x (
p..= 9)
13 52y Acigjr(l+r2)+4(;i+ ;J?)rz

in which r= w./wi. For constant modal damping ¢ this equation reduces to

822 (1) x>/ 2 20)

(1-2) 2 + 422r (141)

If the cross-modal coefficients p,. of all natural modes are p,.=1 for i=j and
.=0 for 1+J, then the maximum ré&sponse of displacements calcuiated by the CQC
meahod agrees with that by the SRSS method.

pij =

NUMERICAL RESULTS

Numerical Example A numerical example is presented to demonstrate the effec-
tiveness of the analytical method described here and to investigate some dynamic
characteristics of vertically vibrating rigid-frame bridges. The computations
were based on data from the Shibechari Bridge located in Hokkaido, Japan. The
bridge geometry and the span lengths are given in Fig. 1. The boundary condi-
tions consist of a pin support at Al, fixed supports at Pl and P2, and a roller
support at A2. Figures 3 and 4 are the longitudinal and vertical ground motion
records of the South Hidaka earthquake taken at Horoman on January 21, 1970,
respectively. This earthquake is a record taken approximately 25 Km from the
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The maximum accelerations of longitu-

F a , M=6.7.
of f strong earthquake of respectively.
-

ical ground moticns are 174.14 gal and 88.29 gal,

ical

ver

The natural circular frequencies computed-by the lumped,
consistent, and continuous mass methods, corresponding to the first 20 modis :f
the numerical example, are presented in Table 1: The number of ?eam segrfxendsb s
%=80. In general, the values of the natural ci?cular'frequenc1es oztalne . y
using the lumped mass method are small in comparison with those of the exac ;
solutions calculated with the continuous mass method. I? contrast, the values o
the natural circular frequencies resulting from the consistent mass meth?q are
relatively large. Figure 5 shows the relationship between the naFural circular
frequency ratio ./uw* and the order of natural modes for the numerical exa@ple of
the five-span continuous rigid-frame bridge with V-shaped legs. Here w* is the
exact solution obtained by the continuous mass method, and w is the app?ox1mate
solution obtained by using the lumped and consistent mass methods. It is seen
that the natural circular frequencies calculated by both the lumped and the
consistent mass methods gradually approach the exact solutions as the number of
beam segments, N, increases. The natural circular frequencies calculated by the
use of the lumped and consistent mass methods are the lower and upper bounds to
the exact solutions, respectively. It may be also pointed out that for the same
number of beam segments, the use of the consistent mass method provides eigen-
values of greater accurate than does the lumped mass method.

The mathematical relationship among the lumped, consistent, and continuous
mass methods is established in Refs. 4 and 7. The power series expansion of the
eigen stiffness matrices [K_ ] and [K,. ] under axial and flexural vibrations in
the vertical plane may be written in matrix notation as follows:

ERECTR PR IS TP (11a)

Natural Frequencies

w

]

9
{“ae‘

> - 12 4 - - . . L
[lee[ = [Kf] - [Mfl]w - [Mfz]w (11b)

In the case of longitudinal vibrations, the stiffness matrix [K ] and the first
order mass matrix [M_.] agree precisely with the static stiffneSs matrix and the
consistent mass matriX, respectively, for axial vibration in the discrete
coordinate system. Also, the square matrices [K_] and [M_.] of Eq. (11b) for
lateral vibrations agree precisely with the static-stiffneSs and mass-influence
coefficients evaluated by using the cubic Hermitian polynomials as the interpo-
lation functions, respectively. It is concluded, therefore, that the consistent
mass method is equivalent to a special case of the continuous mass method
obtained by neglecting terms of higher than second order. Moreover, it is
estimated that the lumped mass method is a truncated result of the consistent
mass method obtained by omitting the mass coupling. The relationship between the
exact and approximate methods is clearly demonstrated by the above mathematical
derivations, and is also easily comprehensible from the computed results shown
in Fig. 5.

Maximum Response of Displacements By assuming 2 percent damping and the natural
frequencies obtained by the consistent mass method, the participation factors p,
of Eq. (6) and the modal cross-correlation coefficients p., of Eq. (10) can be *
calculated as shown in Table 2. As seen in the example sTructure, the values of
the participation factors in the higher modes of vibration are large in compari-
son to those in the first few modes. The participation factors in the 6th and
7th modes exhibit especially large values. The closeness of the natural
frequencies between the 9th and 10th modes and between 11th and 12th modes is
recognized; also, the modal cross-correlation coefficients corresponding to these
modes are very large in comparison with the others in Table 2. Therefore, it can
be considered for this case that the higher modes significantly influence seismic
analysis for combining modal maxima.

The response values for horizontal displacement x (cm) and vertical displace-
ment y (cm) calculated by the SRSS method and the CQC method are shownin Table 3.
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Also, the numerical results of the time history response analysis, in which all
20 modes were used, are presented in comparison with two conventional methods of
combining modal maxima. It is clear that the SRSS method greatly underestimates
the horizontal displacements in the direction of the motion. Also, the vertical
displacements found by the CQC method are underestimated. In general, the
calculated results of the time history response analysis are higher than those of
both the SRSS method and the CQC method. However, there is no considerable
difference between the SRSS method and the CQC method in response spectrum calcu-
lations of the five-span continuous rigid-frame bridge with V-shaped legs.

CONCLUSIONS

The mathematical relation between the exact method based on the general
solutions of differential equations of motion and the approximate method based on
a finite element approach is established in this presentation. The values of
natural frequencies calculated by using the lumped and consistent mass methods
are the lower and upper bounds, respectively, to the exact solutions. Assuming
the same number of beam segments, the eigenvalues of rigid-frame bridges can be
calculated more accurately by the consistent mass method than by the lumped mass
method.

In the response spectrum calculations, the values of participation factors
and the modal cross—correlation coefficients estimated by some higher modes are
larger than those estimated by the first few lower modes. For two-dimensional
rigid-frame bridge structures, it is proposed that the SRSS method and the CQC
method of combining modal maxima yield good results when compared to time history
response calculations. This study provides a basis for future theoretical
research and may be applied to the structural dynamics of thin-walled three-
dimensional structures with inclusion of warping effects.
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Natural Vibration Analysis
of Brldge Structures
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Fig. 1 General View of Rigid-Frame Bridge
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Fig. 3 Longitudinal Ground Motion
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Fig. 4 Vertical Ground Motion

Table 1 Natural Circular
Frequencies Computed

Fig. 2 Schematical Description

Value of w/w+

Lumped mass method

——=—= Consistent moss method
—-—=Continuous mass method
| | |

5 10 15
Mode order

0.85

1 20

Fig. 5 Comparison of Natural
Circular Frequencies

Table 2 Modal Cross-Correlation Coefficients

by Three leferent Natural Modal crosa-correlation coefficients Pyy
Mode |6 facto
Mass Methods ocder| i) | °;‘ i T 2z 3 4 s & 7 8 9 1 u n
Lumed 1o - 1| 1931 2.119 1.0000 0.0200 0.0134 0.0066 0.0035 0.0025 0.0016 0.0010 0.0008 0.0007 0.0006 0.0006
Mode ,::’:: an;:::e"t Cnn’:;;usmus 2 | 2548 1.490 0.0200 1.0000 0.2940 0.0372 0.0110 0.0068 0.0037 0.0023 0.0015 0.0014 0.0011 0,00
order | method method method 3| 2m -2.847 0.0134 0.2940 1.0000 0.0744 0.0159 0.0091 0.0047 0.0024 0.0017 0,006 0.0013 0.0013
4 | 312 -3.345 0.0066 0.0372 0.0744 1.0000 0.0518 0.02L1 0.0085 0.0038 0.0025 0.0024 0.0019 0.0018
1| 12,0779 121343 12.1280 s | 3701 1113 0.0035 0.0110 0.0159 0.0518 1.0000 0.1383 0.0240 0.0074 0.0045 0.0041 0.003) 0.0030
2 | 15.9130 16.0086 16.0000 6 | 4.089 12.293 0.0025 0.0068 0.0091 0.0211 0.1383 1.0000 0.0630 0.0123 0.0067 0.0060 0.0043 0.0042
3 | 16.9244 17.0312 17.0220 7 | 4.769 6.301 0.0016 0.0037 0.0047 0.0085 0.0240 0.0630 1.0000 0.0384 0.0148 0.0128 0.0082 0.0073
4 | 19.5263. 19.6058 19.5950 8 | s.821 -2.995 0.0010 0.0023 0.0024 0.0038 0.0074 0.0123 0.0384 1.0000 0.0942 0.0685 0.0286 0.0265
5 | 23.1490 23.2537 23.2406 9 | 6.589 0.752 0.0008 0.00LS 0.0017 0.0025 0.0045 0.0067 0.0148 0.0942 1.0000 0.7468 0.1205 0.1042
6 | 25.5647 256921 2 10 | 6.74¢ 3.758 0.0007 0.0014 0.0016 0.0024 0.0041 0.0060 0.0128 0.0685 0,7468 1.0000 0,1823 0.1535
. . 5.6773 | 7.339 -1.972 0.0006 0.0011 0.0013 0.0019 0.0031 0.0043 0.0082 0.0286 0.1205 0.1823 1.0000 0.9498
7 29.6828 29,9651 29.9478 12 | 7.407 1.612 0.0006 0.001 0.0013 0,0018 0.0030 0.0042 0.0079 0.0265 0.1042 0.1535 0.9498 1.0000
8 36.1952 36.5749 36.5529
El 41.0448 41,3972 41.3728
10 | 41.7743 42.3727 | 42, i i i
2,3452 Table 3 Comparison of Modal Combination Methods
n 45.6868 46.1153 46,0867
12 46.1368 46.5411 46.5132
4. Horizontal Vertical
13 8.4642 48,9259 48,8953 displacements displacements
14 61.8550 63.0179 62.9664 X (cm) Y (cm)
15 63.0435 64.5 . N
331 64.4789 Analytical point | point | point | point | point | point
16 68.3102 69.7503 69.6821 method 11 21 46 11 21 46
7 69.2541 70.4185 70.3631 SRSS method 2.46 4.44 | 13.13 1] 15.6 11.12
18 | 80.5942 | 82.7604 | B82.6762 g . . . 69| 11-88 | M-
19 | 88.1759 90.7033 90.6014 €QC method 2.69 | 4.86 [12.37| 15.02 | 11.53 | 10.23
20 | 91.8246 95,2146 95.1020 Time history
¢ response analysis 3.26 6.00 | 14.45| 23.65| 14.96 | 12.76
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