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SUMMARY

Nonlinear seismic-response characteristics of three-dimensional long-span
cable-stayed bridges are studied. The cases of multiple-support as well as
uniform seismic excitations of these long and flexible structures are considered.
Three sources of nonlinearity are included in the analysis: cable-sag effect,
axial force and bending moment interaction, and changes of geometry of the whole
bridge due to its large deformations. A tangent stiffness iterative procedure
as well as a step-by-step integration procedure are utilized in the analysis
to capture the nonlinear seismic response. Numerical examples are presented to
shed some light on the salient features of the seismic analysis of these contem-
porary and increasingly popular bridges.

INTRODUCTION

The future trend in the design of cable-stayed bridge structures,with longer
center or effective spans, makes the need for nonlinear analysis inevitable.
Since the nonlinearity in the behavior of this special type of flexible, long-
span bridge is of geometric type, and mainly due to large deformations, it is
essential to point out that when the center-span length increases, which will
result in a considerable increase in the displacements and deformations of the
bridge under strong ground shaking, a pronounced nonlinearity in the response
may be expected. Furthermore, although for the present range of center spans
(up to 1600 ft or 500 m), linear dynamic analysis is adequate, nonlinear static
analysis under dead loads is still essential to start the linear dynamic analysis
from the dead load deformed state (Fig. 1).

In this study, a general step-by-step integration technique is presented
for the evaluation of the seismic response of geometrically nonlinear cable-
stayed bridges. The structure is descretized in space into finite elements,
mainly beam-column elements and cable elements, and the Wilson-8 Method [3] is
used for the time discretization, to assure numerical stability of the algorithm
for all time increments

Equations of Motion To separate the vibrational response from the quasi-static
response in order to examine the dynamic or inertial as well as the kinematic
effects, the equations of motion of the bridge can be written in the partitioned

form:
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where [Mg.], [ng] and [K g] are rectangular mass, damping, and stiffness
matrices,grespectively, o% order N x g (where N = number of degrees of freedom
of the finite element model and g = number of earthquake inputs). These rec-
tangular matrices represent the coupling between the structural nodes not
connected to the ground, and the support displacements due to seismic motion

vg is the total displacement of the structural nodes and Vg is the displacement
of nodes connected to the ground. The mass and damping matrices are assumed to
be constant, while the stiffness matrix is changing as a function of nodal dis-
placements. Assuming that the displacements can be decomposed into quasi-static
and vibrational displacements

ys _ vs + yps X (2)
g Ipg

The elastic force computed in the above equation as [Kgg] ({¥ye) + {yps}) can

be viewed as the sum of two parts, vibrational elastic force (due to vibrational
displacements), and pseudo-static elastic force (due to support displacement);
see Fig. 2 This yields:

[k (r,e + YPS)]{YVS} + {yps}) = [Kssl]{yvs}+ [Kssz]{yps} . 3)

For an unloaded structure with a static condition of support displacements the
equilibrium is expressed by

[Kogpdly b + [K My k=0 . (4)

It should be mentioned that the stiffness matrix (whether the secant stiffness
used in the equation of dynamic equilibrium, or the tangent stiffness used in the
incremental equations of motion) is a function of the dead-load displacement plus
the vibrational displacement (Fig. 2), Thus, the quasi-static displacement is
not included in computing the stiffness. In the above, {y..} is the vector of
ground displacements at the supports of the structure. SubStitution from

Egs. 2, 3 and 4 into Eq. 1 yields

[Mss]{yvs} + [Css]{ivs} + [Kssl

iy, } = B} (5)
where
PO} = (D [k, R ] - M DD, )

+ ([css][Ksszj”l[ng] - [CSg]){§pg} ) ®

Generally, the contribution due to the damping term in the above equation is
neglected; also, if a lumped mass idealization is used, [Msg] becomes a null
matrix, in which case Eq. 6 reduces to

P} = IR HI R Iy b = - Do Jle 165, ) )
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where [G s] is the matrix of quasi-static functioms, whose columns represent the
static displacements corresponding to unit displacement of the supporting points.
It can be assumed that these quasi-static functioms (Fig. 3) remain constant
during the earthquake-response excitation, and that they are not affected in
shape by the change in the stiffness of the structure. Such an assumption is
possible since the changes in [Kssz]'l and [ng] can cancel each other when they
are multiplied, and since these quasi-static functions are normalized functions,
whose maximum values equal to unity. The above assumption makes it possible to
avoid inverting the stiffness matrix [Kggy] at the beginning of each iteration
cycle, and thus saves a considerable amount of computational time.

Incremental Form of the Equations of Motion The equations of dynamic equili-
brium at time t,; can be written in a matrix form. At a later time T, where

T = 0At, the equations of dynamic equilibrium can also be written. Subtracting
the first set from the second set of equations results in the incremental
equations of motion:

[{ay,} + [Al{a%,} + [Kp(r )] hy,} = (B,) + (2} - (M {3} - [CI{y,} - (E5).
(8)

In the above equation, the hat over A indicates that the increments are associ-
ated with the extended time step T = 6At; [KT(yi)] is the tangent stiffness
matrix which is a function of the nodal displacements at time t;, and is assumed
to remain constant during the increment of time T; {y(t;)} and {P(tj)} are the
vectors of dynamic nodal displacement and externally applied dynamic nodal forces
at time tj, respectively.

The Elastic Force Vector {F§} It is possible to calculate the elastic force
vector {F§} by simply adding up the incremental force changes {AF€}; (Fig. 4-a).
However, because the stiffness matrix [KT] is, in general, only an approximation,
significant errors can accumulate in this procedure. Therefore, it is preferable
to compute [F%] from the dead-load (D.L.) displacements plus the vibrational
displacements at time t; as follows (Fig. 4-b):

{F} = [KGyp o +y)1yy 3+ {y, D) - {F) .}, (9)

in which [Ks(yD.L. + yi)] is the secant stiffness based on the joint displace-
ments and member forces due to both D.L. and vibrational displacements.

This process is usually carried out on the element level, where the member-
end actions are computed for each element based on the D.L. and vibrational
displacements using the secant stiffness of the element at this particular
deformed state. Then, for each node, these internal forces are assembled and
projected on the system global coordinates, for all the elements jointing at
this particular node. By inverting the sign of these assembled forces for all
the nodes, and subtracting from them the externally applied dead-load forces at
the joints, the elastic force vector due to dynamic displacements, {F%}, is
obtained.

The Tangent Stiffness Matrix [Km(zj)l The tangent stiffness matrix at any time
ti is assembled from the individual element tangent stiffness matrices at the
same instant of time. For each element, its tangent stiffness [kp] is the sum
of the elastic stiffness and the geometric stiffness [KT] changes as a function
of both the nodal displacements and the member axial thrust. It is computed
once at the beginning of each time step and used during iterations in this time
step until convergence is achieved to some acceptable tolerance. This means
that the modified Newton-Raphson technique is used in the iterative procedure to
achieve equilibrium (to some tolerance) at the end of each time step.
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THE USE OF MODAL SUPERPOSITION IN SOLVING THE NONLINEAR DYNAMIC PROBLEM

The solution of Eq. 8 for nonlinear systems, using a direct step-by-step
integration procedure, requires the iterative solution of a nonlinear system of
algebraic equations, equal in order to the number of degrees of freedom in the
finite-element model. This may require the solution of a very large order system.
Therefore, the modal response method is utilized to replace the original system
of equations for the structure nodal displacements by a smaller system of equa-
tions for a system of generalized coordinates. In principle, the use of modal
superposition simply involves a coordinate transformation, where the normal mode
shapes serve as a set of orthogonal bases, from the finite element real displace-
ment coordinates to the modal coordinates; the modal transformation is given by

iy, 1= [®]{qi} , (10)

where [®] are the mode shapes obtained using the tangent stiffness matrix in
the dead-load deformed state, and {q} is the vector of 'nonlinear' generalized
displacement.

Application and Validation Since the modes used here are those obtained using
the tangent stiffness matrix of the bridge in the dead load deformed state, and
are assumed to remain constant for the purpose of coordinate transformation
during the entire earthquake analysis, the results obtained by this method need
to be verified. Poor agreement was obtained between the results of this method
and those of the direct integration method, when only 10 modes were used. In
the current analysis 30 modes, which proved to be sufficient, are used for the
purpose of coordinate transformation; these modes cover a band of the bridge
vibration. Two models are considered in this study; the first model (I) has a
center span of 1100 ft (335.5 m) and side spans of 480 ft (146.4 m) while the
second model has a center span of 2200 ft (671 m) and side spans of 960 ft
(292.8 m). The second model (II) represents the future trend in cable-stayed
bridge design. Some of the ground motion records taken from the Imperial Valley
(El Centro), California, earthquake (M, = 6.6) of October 15, 1979 are employed
in this study to define the multiple-input or non-synchronous motions as well as
uniform support motions [2]. A damping ratio of 2 percent was assumed for all
modes. Comparison between the results of linear and nonlinear dynamic analysis,
following a nonlinear (as well as a linear) dead-load static analysis are
presented in Figs. 5, 6 and 7.

Since the difference between linear- and nonlinear-dynamic analyses for
Model I is small (Fig. 5), it is important to examine the validity of using
linear static analysis and to investigate the necessity of performing a nonlinear
analysis under dead loads to start the dynamic analysis (with the tangent stiff-
ness at the dead-load deformed state). By examining Fig, 5, it is evident that
there is not much difference between the results of the linear- and nonlinear-
dynamic analyses for this 1100 ft center-span model. It is evident from
Figs. 5, 6 and 7 that the nonlinear dynamic behavior of model II is more pro-
nounced than in the case of Model I. Furthermore, there is a frequency shift
observed in the response time-history; this is due to the fact that the overall
stiffness of the bridge increases by the increase in the dynamic displacements
as well as the forces, This result is consistent with the fact that the
nonlinearity is of geometric type, and that it is mainly due to large defor-
mations and an increase in the center-span length.
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CONCLUDING REMARKS

1. Although for the present range of center of effective spams (up to 1600 ft
or 500 m), linear dynamic analysis is adequate, nonlinear static analysis
under dead loads is still essential to start the linear dynamic analysis
from the dead load deformed state (Fig. 5).

2. For the recent and future trends of longer center span (> 2000 ft or 600 m),
geometrically nonlinear dynamic analysis is necessary for computing the
response of the bridge subjected to strong ground shaking (Figs. 6,7). Such
trends make the need for such nonlinear analysis inevitable; this is essen-
tial not only for evaluting the stresses and deformations induced by environ-
mental loads, such as vehicular traffic, wind, and earthquakes, but also for
assuring safety during construction.

3. Multiple-support seismic excitations can have a significant effect and
should be considered in the earthquake-response analysis of such long and
complex three-dimensional structures; this effect is more pronounced when
the structural redundancy gets higher (Figs. 6 and 7).
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Fig. 1 Linear and nonlinear analyses (static and dynamic) of cable-stayed bridges.
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