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SUMMARY

A layered finite strip method is developed for the nonlinear elasto-plastic
analysis of the static and dynamic behavior of slabs. The material nonlinearity,
crack opening and closing, yielding and crushing of concrete as well as yielding
of the reinforcement steel, is taken into account. The Simpson's integration
rule and Newmark's methods are used. The method is programmed and used to
analyze to several numerical examples. The results are compared with experiment-
al test data and other sources are also presented.

INTRODUCTION

The finite strip method is a suitable approach and has been successfully
used in static and dynamic analysis of floors, roofs, bridge decks and box-girder
bridges by Cheung and Cheung et al (Refs. 1,2,3). The layered finite element
method has been used by Hand et al (Ref. 4). So far as the authors are aware, no
study has yet been reported of a layered finite strip method. Simpson's integra-
tion is used along the span of the strip element to calculate stiffness matrices
and pseudo forces. The points selected for the Simpson's integration can be
arbitrarily arranged in each layer because there is no restraint of connectivity
relationship among the integration points. Step by step iteration method is used
to solve static equations of equilibrium or dynamic equations of motions. The
strains and stresses are updated at Simpson's integration points. More closely
spaced integration points can be selected in the plastic zones than in the
elastic zones to make the analysis efficient and accurate.

LAYERED FINITE STRIP ELEMENT FORMULATION

The layered finite strip element developed in this paper is formed by
combining the LO2 rectangular bending strip with the LO2 plane strip element
(Ref. 5) as shown in Fig. 1. The assumed displacement field in layered strip
element can be expressed as:

u = uo -z W,x
v=vy -z Wy (1)
w =W,

where ug, vg and wg are inplane and transverse displacement functions, respect-
ively in the middle surface.
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The strains can be written as:

{el = {ggr =z {0 (2)
in which {e} = the generic strain vector at any point (x,v,2)
feo} = the plane strains at the reference surface
7+ = the curvatures in the reference surface
The layered strip element stiffness is calculated as:
K_ | K
. PP | Pb
i
K] = = |-t (3)
m=1 T|
Kpb ! Kbb
in which K__ = plane stiffness, Kpb = coupling stiffness and Kbb = bending

stiffness.

MATERIAL PROPERTIES

The assumed failure envelopes for concrete in a biaxial state of stress and
strain are given by (6) and are shown in Fig. 2. The yielding is governed by a
yvield criterion of the form:

F({c}®) =0 (4)

In accordance with the Von Mises yield criterion, the yield surface is defined as

; ~C c 2 c ¢ c 2 1/2 c
F({ci™) = [(o)) - oy 0y + (0,) ] - 9, (5)
where 08 = uniaxial yield stress of concrete and 0;, 0; = the principal stresses
of concrete.

To simulate the behavior of reinforced concrete under reversed loading, six
crack modes for an element of concrete are allowed in the analytical model (6,7).
These are shown in Fig. 3. The "Initial Stress Approach" is used (9).
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A "smeared" composite material property matrix is generated by adding the

constitutive matrix for steel reinforcement to that of plain concrete. This can
be written as:
p] = [p]¢ S
(o], = (031 + [p1° (6)
NUMERICAL PROCEDURE
The equations of static equilibrium are
[K] {AU} = {AP} + {AF} (7)

where [K] = tangent stiffness matrix; {AU} = generalized increment nodal displace-~
ment vector; {AP} = generalized increment external force vector and {AF} =
equivalent increment nodal loads that account for the plastic flow.

The equation of motion for the implicit integration option is
[M] {au} + [K] {au} = {aP} + {AF} (8)

in which [M] = consistent mass matrix. The expression for LO2 rectangular strip
is given in Ref. 5. The numerical procedure was programmed using the layered
finite strip element method.

NUMERICAL RESULTS

A number of numerical examples were investigated to test the validity of the
layered finite strip method.

Example 1: Elastic Simply Supported Square Plate: In order to illustrate the
accuracy and convergence of the layered finite strip element, an elastic simply
supported square plate subjected to uniformly distributed load was tested. The
results were compared with those obtained by the finite strip element and with
exact solution in Table 1.

Table 1. Convergence Test of the Layered Strip Method (Term 1)

vV =20.3 Finite Layered Strip Finite Strip Method (1)
Total Number Wnax MxXmax Mymax Wyax MXmax My ax
of Layers (1) (2) (3} (4) (5) (6?

4 0.00411 0.0442 0.0436
6 0.00411 0.0458 0.0452
8 0.00411 | 0.0464 | o0.0458 | 0-00411 | 0.0502 1 0.0502
10 0.00411 0.0467 0.0461
Exact (10) 0.00406 0.0479 0.0479 0.00406 0.0479 0.0479
2
Multiplier qa4/D qa2 qa4/D qa

Example 2: Natural Frequencies of a Simply Supported Plate: Table 2 shows the
natural frequence obtained by the layered finite strip method in comparison with
the finite strip method and the exact solution.
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Table 2. Natural Frequency for Simply Supported Square Plate

No. Finite Layered Strip Method Finite Strip Method (2) Exact (11)
1 19.737 19.74 19.739
2 49.399 49.32 49.348
3 - 78.91 78.956
4 98.369 98.68 98.696
5 127.398 128.17 128.305

(a=b=1,D=1, ph =1, v =1/6)

Example 3:

Isotropic Elasto—-Plastic Simply Supported Square Plate:

An elasto-

plastic analysis of a simply supported plate is performed using the layered

finite strip method.

There are 6 layers and 8 Simpson's points for each layer.

The results were compared with heterosis element in Ref. (12) shown in Fig. 4.

Example 4: Reinforced Concrete Slab: An analysis was carried out of a reinforc-—
ed concrete slab S1 tested by Taylor (Ref. 13). The test performed by Taylor is
a simply supported square plate subjected to uniformly distributed load. The
properties of the specimen are summarized in Table 3.
Table 3. The Properties of the Concrete Slabs
Concrete Steel
Slab E. Oc ot € Vo Eg oy ds
(psi) (psi) | (psi) | (in/in) (psi) (psi) (in)
6

S1 3.3 x 10 5940 550 0.0025 0.18 | 3.0 x 107 54500 | 0.1875
(13)

ID2 3.0 x 106 3310 624 0.0025 0.18 | 3.0 x 107 50000 | 0.2500
(16)

The load-deflection curve is shown in Fig. 5. It would be noted that
flexural cracking began on the underside at 4.5 ton, and that cracks appeared
first in the central region and spread towards the cormers under increasing load.
The extent and directions of the cracks are shown in Fig. 6. As the load in-
creased, the yielding of reinforcement steel occurred at p = 13 ton. At p = 16.5
ton crushing of concrete occurred. A comparison of the theoretical and experi-
mental load-deflection curves shows that the experimental stiffness is approxi-
mately 75 percent of the theoretical. This result confirms the Bell's analysis
(14). The discrepancy could be in the assumption of the concrete properties.

The layered strip method takes less computer time and has a smaller band-
width of total stiffness matrix than the finite element method (see Table 4).

Table 4. Comparison of the Layered Finite Strip Method with the Finite Element
Method

Method | No. of | No. of No. of Band~ | Total No.|No. of Iterations | CPU

Joints | Elements | Equations | Width | of Load |per Load Step Time
Steps

L.F.S. 5 4 20 20 27 2.1 488

F.E.M. |~

(15) 19 24 72 30 16 8.9 709

Example 5: Dynamic Response of Concrete Slab: An initial investigation of the

layered finite strip method on the dynamic response of a concrete slab ID2 is
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shown in Fig. 7. The material properties are listed in Table 3. The analysis
simulates the dynamic response by using a constant step load 9 psi. The
difference shown in Fig. 7 perhaps could be due to the different loads used in
the theoretical analysis and strain rate effects.

CONCLUSION

The layered finite strip method is developed and programmed. The theory
gives very good results for elastic-plastic isotropic plates and for computing
the natural frequencies. The method predicts the crack extent and directions of
crack patterns agreed with the experiment quite well.

The method uses less computer time, and the bandwidth of the total stiffness
matrix than that in the finite element method. Also, less input data is required.

Further efforts must be made to improve the accuracy analysis for concrete
problems.
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