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SUMMARY

Presented in this paper are the dynamic failure patterns of model embankments
of moistured sand obtained throughout the experiments carried on a shaking table
and those simulations. From the experiments it is found that dynamic failure
shows a frequency dependency and differs remarkably from static one observed in
tilting tests. Both equivalent linear dynamic analysis and non-linear one simu-
late fairly well above results clarifying those mechanism to some extent.

INTRODUCTION

In the assessment of seismic stability of soil structures, only conventional
method such as so-called seismic coefficient method is officially approved and
dynamic analysis is regarded as supplemental method in Japan. In order to author-
ize dynamic analysis, it is necessary for the engineers to understand clearly the
correlation of both methods. Some parts of it have been successfully understood.
For an example, the factor of safety in a potential sliding surface obtained from
dynamic analysis at arbitrary instant does agree well with the one calculated with
the conventional method against the seismic coefficient equivalent to the inertia
force estimated in dynamic analysis at same instant(Ref.1). The correlation of
failure patterns defined by both methods, however, remains unknown. In elucidat-
ing it, a mechanism resulting in each failure pattern must be clarified. Some
characteristics of failure supposed in the conventional method were discussed by
the authors(Ref.2) on the basis of experiments and a non-linear analysis where
model slopes of same sand as in this paper were failured statically by horizontal
and vertical gravity forces generated with tilting them. In this paper presented
are dynamic failure patterns, those simulations and comparison of dynamic failure
with static one quoted from the reference.

DYNAMIC FAILURE TESTS ON MODEL EMBANKMENTS

Methods A diluvial sand borrowed from a power station was used for the models,
which is classified as SC according to Japanese Unified Soil Classification System.
Its grain size accumulation curve is shown in Fig.1. All models were constructed
by means of compaction in a testing box of steel on a shaking table and were 1(m)
in the height, 0.7(m) in the width of flat top, 1:2.0 in the slopes of both sides
and 4.5(m) in the length of axial direction. Index properties of the sand,are

2.65 in specific gravity, 16.2(%) in optimum water content and 1.715(gr/cm”) in
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Fig. 1 Grain Size Accumulation Curves of Tested Sands

maximum dry density. Throughout total series of the experiments including the
static tests mentioned above, void ratio, water cogtent, density and shear wave
velocity of all models were 1.1, 14(%), 1.45(gr/cm”) and 67(m/s) on the average
respectively. In every model 18 acceleration meters in horizontal direction were
arranged at the lattice points in half side of cross section as shown in Fig.5 and
4 ones in the vertical at those points on the slope. In order to detect occurring
and the position of sliding, 3 displacement meters of thin phosphoric copper plate
were embedded in vertical direction as shown in Fig.2. On the upper part of each
plate 5 paper strain gauges were pasted at intervals of S(cm) so as to search its
deflection due to sliding in a model.

Resonant curves were made first on every model under the intensity of base
acceleration of 25, 50, 75 and 100(gal). Measured resonant frequencies changed
from about 20 to 15(Hz) as base acceleration increased. After these tests every
model was excited with the sinusoidal base motion of constant frequency and of
stepwise increasing amplitude untill failure occurred. Five sorts of frequency in
all including 15(Hz) were adopted to the tests and two models were failured with
every frequency. When failure starts strain gauges indicate it as shown in Fig.2.
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Fig. 2 Behavior of Strain on Displacement Meter

Results Fig.3 shows a relationship between measured accelerations at the instant
of starting of failure and frequency of base motion. It may be seen that accel-
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Fig. 3 Relationship between Acceleration at Failure and Frequency of Base Motion

eration at top of model on begining of failure seems to be kept constant at near
around 1000(gal) as frequency of base motion changes from 5 to 25(Hz). TFig.h

shows some typical views of failured models and Fig.5 shows contours of amplifi-
cation of maximum response acceleration at failure in the cross section of model.
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Failure patterns are summarized as follows.
(1) In all cases failured zone concentrated around crest.
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WUMERICAL SIMULATIONS OF DYNAMIC FAILURE TESTS
Typamic Congtants  In advence of simulations, dynamic torsional shearing tests
wers carried on the specimens of which average density and water content were
arranged “o be egual %o those of the models under such low confining pressures as
in *he models, resulting in the following hyperbolic formulatioms,
- (2.17-e) 2 0,525 1 _

G = 9505 o) ° o= B 7 0 Vo powio M
where G, e, O' and h are shearing modulus, void ratio, effective mean principal
stress and dambing constant respectively. Rayleigh type damping with above h was
used i the following calculations, as

ig=1.4 ha g+ 0.6(h/u){k (2)
wnere i ,{K, ané{c} are the matrices of mass, stiffness and damping of the
element respectively and w, is the first natural frequency of a model.

Equivalent Linear Dynamic Analysis  Above resonant exciting tests and dynamic

failure tests of 5, 15 and 25(Hz) in frequencies of base motion were simulated
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ig. 7 Contours of Magnification of Calculated Response Accelerations in Failure
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first with the equivalent linear dynamic analysis. Simulated resonant curves of
four intensities of base acceleration agree fairly well with those of experiments
in first and second resonant frequencies, in shapes and values of resonant curve
and in distributions of amplification of response acceleration. Fig.T shows the
simulated contours of magnification of horizontal response acceleration in failure
tests of 5 and 25(Hz) in frequency of base motion. Comparing Fig.T with Fig.5 it
may be seen that both shapes of contour are similar each other. Besides the value
of calculated response acceleration was 1330(gal) in case of 5(Hz) and was 1560
(gal) in case of 25(Hz). These are nearly constant though a little larger than
those obtained in the experiments. In any way it may be said that the equivalent
linear dynamic analysis simulates fairly well above experiments as a whole.
Non-Linear Dynamic Analysis Above mentioned failure tests with 3 sorts of
frequency were simulated also by non-linear dynamic analysis where the joint
elements of yielding criteria as shown in Fig.8 were inserted into every boundary
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of all finite elements. The strength parameters c and ¢ used in the criteria are
12.7(grf/cm?) and 36° respectively which were obtained from usual tri-axial
compression tests. The values of spring constants k and k of every joint element
were given to be 1000(kgf/cm2) that were 207100 timeSs larggr than the stiffness of
finite elements so as to make the first natural frequency of every numerical model
coincide with the one of the case without joint element. Initial stresses due to
gravity were estimated with average elastic constants of E = SO.S(kgf/cmz) and v =
0.3 obtained from elastic wave velocities of models. Dynamic moduli and damping
constants finally converged in above steady state solution with equivalent linear
analysis were applied and fixed in the finite elements in each case. So that,
non-linear property was taken into account only in joint elements. In non-linear
analysis the load transfer method was applied at every discrete time step At taken

to be 5x10 5(sec). g
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Fig. 9 Time Histories of Dlsplacement and Acceleration

Results Calculated time histories of displacement and acceleration on the top
point of a model in case of 5(Hz) are shown in Fig.9 for an example. From this
figures it is seen that the response acceleration in non-linear case is nearly
equal to the one in the equivalent linear case though the permanent deformation is
generated. Simulated deformations in failure are shown in Fig.10. In case of 5
(Hz) top layer only deformed largely while lower portion remains the original
form. In case of 25(Hz) permanent deformation of top layer is not so remarkable
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dynamic failure is different from static one in the numerical simulation too.

CONCLUDING REMARKS

(1) Dynamic failure patterns show a frequency dependency, however, the failure
occurs when the values of response accelerations at failured portions attain
to a certain constant value independent of frequency.

(2) Equivalent linear analysis simulates fairly well the dynamic failure of soil
structures and non-linear one with joint elements can clarify its mechanism.

(3) Dynamic failure is quite different from static one.
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