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SUMMARY

A modular and general approach for the three-dimensional analysis of arch dams submitted
to earthquake loadings including fluid reservoir and soil interaction is presented in this paper. The
analysis is performed in the frequency domain. A particular emphasis is given to domain
decomposition with immediate consequence the ability to use the best numerical technique for each
domain : the structure, the reservoir and the soil. The arch dam is modelled by thick shell finite
elements, the fluid reservoir by fluid boundary elements and the soil by solid boundary elements so
that only the interfaces need to be meshed. A reduced basis approach is also undertaken by using the
various kinematic modes on the interfaces between the three domains and the subsequent fields in the
reservoir and the soil. A very modular computer code has been implemented following these
specifications and one application to a real case is finally discussed.

INTRODUCTION

It is well known that the dynamic interaction of an arch dam with its reservoir and soil
foundation may considerably modify the structural response in several ways. The influence of wave
diffraction and propagation in the soil is also important either from the point of view of soil-structure
interaction because the stiffnesses of the dam and the surrounding soil are comparable or soil-
reservoir interaction which is also the source of further damping. Finally the so-called local site effect
is not to be neglected in the classical geometry of an arch dam and its valley because propagating
surface waves may be present. The boundary element technique is well suited to the simplicity of the
Helmholtz equation in the reservoir body and the complexity of the reservoir bottom. Apart from the
above mentionned special requirements the analysis is developped as far as possible with the exact
continuous fields and the discretization process is isolated clearly.

MODELLING ASSUMPTIONS FOR THE SOIL/ RESERVOIR/ STRUCTURE SYSTEM
In this section the necessary equations to describe the dynamic interaction between a structure, a

compressible fluid lying above a soil foundation are recalled. The typical geometry of the problem
and the notations are presented in Figure 1.
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Figure 1: Definition of the geometry of domains and interfaces

The earthquake loading is introduced through the local seismic incident displacement field

u;(x,) depending on the spatial variable x and on the circular frequency ® . The soil is assumed to
be linear elastic. The following general notations will be used throughout the paper for fields p and q

defined over the domain Q, or the boundary I'gy :

(p.do =JQap®) qx) dv, <P.q>q = Ira p®) qx) dS, )

The generic double index aff will be used at the interface FOCB between the two domains Qg and QB‘
Pe is the specific mass of the material inside the domain Q. (V) stands for the stress tensor field

corresponding to the deformation tensor field € (v ) and displacement field v. On a boundary with
exterior normal vector n, the traction vector t is given by :t = o.n.

Elastodynamics of the soil domain Qg The soil is modelled by the equations of the elastodynamics
in the frequency domain. The total displacement field ug in this domain, must satisfy boundary

conditions on the free surface I'g, displacement and stress vector continuity at the interface between
the eventual layers, it must also match the free seismic field of the site at the infinity.

ug = uj ,on I'geo 2)
and at the interface with the fluid on I'gs, the latter gives the pressure :

tg(ug) =pnfs on Isf. 3)

By definition, an elastodynamic displacement field of the soil will be defined as a field of
displacements satisfying the elastodynamic equations in each layer together with the boundary
conditions at the free surface, between the layers and the radiation conditions. The elastodynamic
displacements in the soil are approximated by the boundary element method with the numerical
layered half space Green's function .
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Elastodynamics of the structure Let up , Op(up) , tp(up) respectively be the fields of real

displacements, stresses in the structure and the field of the vector stresses on I'yf or I'hg. Let vp be a
field of virtual kinematically admissible displacements . The principle of virtual works applied to the

structure p, in the frequency domain gives :

- 2 (ppup > Vb)p + ( op(up) , E(VH)p = < tp(up) , Vo>pf + < tp(up) , Vo>hg 4

Up to now and for the sake of a simplified presentation the structure is considered as a three-
dimensional solid. Actually thick shell kinematic assumptions are made to take into account the small
thickness of the dam with regard to its height. In the present work elastodynamic displacements in the
structure defined in a similar way as for the soil are approximated by the finite element method.

The imposed boundary conditions to the displacements of the structure are the following : at
the interface with the soil, the displacements of the structure must match the displacements of the soil
ug , while at the interface between the structure and the fluid, the latter imposes the pressure :

up = ug, tp(up ) + tg(ug )= 0 onIpg, tp(up) =p nf onI'pf o)

Acoustics of the fluid The fluid is assumed inviscid and compressible and only small movements are
studied. When c is the speed of propagation of the waves in the fluid medium, the pressure field
must then satisfy the reduced wave equation in the frequency domain. The boundary conditions
imposed to the pressure field are the following :

p=0 onTIg, OnfP = - pf®2 (u.n) on I'pgU Tyt ©)
By definition, an acoustic field of the reservoir, will be a pressure field which satisfies the

preceeding equations. In any case in this paper the acoustic pressures are approximated by the
boundary element method with the fluid half space Green's function.

REPRESENTATION OF THE SOIL-FLUID-STRUCTURE INTERFACE

Interface kinematic fields In order to solve the problem of the triple soil-fluid-structure interaction , a
representation of the displacement field along the interfaces will be assumed, as it is illustrated on the
figure underneath :

Figure 2 :Soil-structure, Fluid-structure, Soil-fluid interface fields

Consequently the interface fields Wbsy, Wofyy , Wsfyy are defined as interface modes. With the help
of these modes we shall build in each domain the fields which match with the preceeding fields.
Possible choices of these modes wil be discussed later on.

Decomposition of the displacement in the structure Let ubsy and ubfy be elastodynamic

displacements in the structure which satisfy respectively the following boundary conditions :
ubsy; = Wosy on Iy, =0on Ty ubfyy = 0 on Ty, =iy on I'y¢ (7)
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Then the total displacements uy, in the structure may be expanded by using the modal participation
factors obSyp and abfys:

up= X obsy ubsy +X abfy  ubly ®)

Decomposition of the displacement in the soil Corresponding to the decomposition on the interface
modes another decomposition of the movement of the soil taking into account the seismic incident
field:

Ug= W+ Ugo+ & OobSy why + X osfy  usty ©)

All the preceeding fields except u; are elastodvnamic in the soil. They differ by the boundary
conditions at the interface with the structure and the bottom of the reservoir :

Ugo = -1 on Ik, Ugo.Ng= -uj.Ngon I, ter(ugo )= - ter(y;) on I (10)
with similar expressions for usty; and usfy.

Decomposition of the pressure field in the reservoir To the interface modes correspond in the same
manner acoustic pressures in the reservoir satisfying particular boundary conditions in such a way
that the dynamical pressure field in the reservoir may be expanded :

p=X abfy pPy + X oty phm (1

Equilibrium conditions across the interfaces The equations of continuity of the stress vector across

the various interfaces shall provide the equations that must be imposed to the coefficients o. These
equations will be expressed as always here in the sense of the principle of virtual works, for each
domain. Let vy, be a virtual kinematically admissible displacement field of the structure, then the
principle of virtual works gives :

<ty (Wp), Vo> bsUbf = <Phf, Vp>pr-<ts (Us), Vo> s (12)

By choosing for vy the interface fields defined above, and by using the decomposition of the

elastodynamic displacements in the structure, the first equations that the participation factors o must
satisfy are obtained:

Z oobsy <tp (ubsy )+t (uPy ), WhsN > ps + X Py <ty (ubfyr ), OS> g

+ X osfy <t (usfyr ), WPSN>ps = - <ts (uj +ugo ) > PPN > s (13)

Similar equations are developped for the dynamical equilibrium of the fluid-strucwure interface and
the dynamical equilibrium of the soil-fluid interface. The three corresponding equations provide the

determination of the o with the seismic loading in the right hand side. To compute the coefficients of
this system, the underneath terms must be established: (1). Design the interface fields ¥, (2). In each
domain : compute the elastodynamic corresponding fields, (3). Compute the above integrals along the

interfaces. After this system is solved for the o, then it is possible to perform the modal synthesis in
each domain and mainly in the structure in order to compute the total displacement uy, , acceleration
level and stresses.
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CONSTRUCTION OF THE INTERFACE FIELDS

Particular case of a rigid soil foundation In those conditions, u; is known and the stress vectors tgin
the soil vanish. It is then tempting to use for the interface modes : (1). At the soil-structure interface
the six rigid body modes; (2). At the fluid-structure interface the six rigid body modes and the rigid
basis eigenmodes of the dam. It should be noted that this basis is not elastodynamic but only its
boundary value along the interfaces are needed.

Local interface modes defined by a full coupling between finite and boundary elements This is the

most numerical approach where the interface modes are chosen equal to the successive finite element
shape functions of the interface nodes. The computation of the elastodynamic solutions in the
structure is then equivalent to dynamic condensation.

Global modes defined by the eigenmodes of the dam resting on elastic support The above method is

simple but certainly very costly as it uses the whole local basis at the interfaces. The following basis
is used in this paper. First of all the eigen modes of the dam resting on an elastic support are
computed by the finite element method. These modes define the interface modes at the dam-fluid and
dam-soil interfaces after which the elastodynamic displacements in the structure may be evaluated.

Then the soil-fluid interface mode ¥y is defined as being the boundary value of an elastodynamic
displacement in the soil which satisfies the following boundary conditions :

ushy = ¥y on I'ys, op(usty) = icpro (whyng), tsr(usiy)= 0 on Iy (14
Again these elastodynamic displacements are computed by boundary elements.
APPLICATION TO THE FULL SEISMIC ANALYSIS OF AN ARCHDAM

The above method of analysis has already been applied several times in the case of a rigid
foundation for the dam and reservoir. It is generalized here to the possibility of propagating waves in
the soil. The dam is 120 meters high with a length of 330 meters and a 5 meters thickness at the top.
The arch is modelled by 108 thick shell finite elements with 1500 degrees of freedom. For the fluid
analysis the bottom of the reservoir and the upward shell of the dam have been meshed with 380 fluid
boundary elements of over 400 meters upwards. For the site effect analysis the soil surface has been
meshed with 495 solid boundary elements both upwards and downwards. The first eleven modes of
vibration of the arch resting on an elastic foundation have been computed with the empty reservoir
The first frequencies respectives are of 2.5, 3., 3.6, 4.9, 5.6 Hz which are to be compared with the
eigenfrequencies on arigid basis : 2.8 3.9 4.2 5.3 6.7 Hz On the figure 3 the mode shape
number 4, 5 and § are shown. The influence of the flexible foundation is clearly seen. On the figure
4, the seismic site effect for an incident P wave inclined to 45 degrees and propagating along the axis
of the valley is shown as the modulus of the y-componant of the diffracted field uqg. On the figure 5
the corresponding pressure mode at the reservoir bottom and dam shell is shown. It is seen that the
effects of the propagation is not limited to the neighborhood of the dam. Space limitations do not
allow to show further results and especially the componant mode synthesis.

CONCLUSION

A modular approach for the three-dimensional analysis of arch dams submitted to earthquake
loadings including fluid reservoir and soil interaction has been discussed. A particular emphasis is
given to domain decomposition in order to use the best numerical technique for each domain. The
arch dam is modelled by thick shell finite elements, the fluid reservoir by fluid boundary elements
and the soil by solid boundary elements so that only the interfaces need to be meshed. A reduced
basis approach is developped by using special kinematic modes on the interfaces between the three
domains. A computer code consisting of several modules one for each domain has been implemented
and can now be applied to the full seismic analysis.
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Figure 3: Mode shapes no 4, 5, 8 of the dam on elastic foundation

Figure 5: Dynamic pressure resulting from site effect
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