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SUMMARY

A systematic method is developed for the interpretation of frequency test
results of arch dams. The method is based on a nonclassical modal synthesis
formulation with the classical formulation as a special case and seeks to
identify the modal parameters using the frequency response data. The parameter
identification process contains a single mode method for initial parameter
estimation and a simple criterion to find the optimal number of modes. Results
of the application of the method to the test data of four arch dams indicate that
the nonclassical formulation is an accurate model for the arch dam system.

INTRODUCTION

One of the most effective methods to study the dynamic characteristics of
an arch dam system is to conduct steady-state forced vibration tests on existing
dams (Refs. 1,2,3). The frequency response curves obtained from these tests can
be utilized in different ways. An often used approach is to find the natural
vibration frequencies and damping ratios by the simple half-power bandwidth
method, in which the modal interference effect is neglected. In one instance, it
was reported that a classical modal synthesis approach, which included the modal
interference effect, was used to identify the modal parameters from the frequency
response data (Ref. 4). More recently, the frequency responses were used to
verify finite element models of the arch dam system (Refs. 1,2) In view of the
great accuracy achieved in recent tests, however, it is felt that the frequency
response data obtained has not yet been fully utilized. For example, the data
may be used to identify the best mathematical model for the _dam system and to
compare the merits of different assumed models withgut havmg 'to set up tl:ze
detailed equations of motion and identifying the equation coefficients. In this
study, a nonclassical modal synthesis approach is adopted and a systematic
procedure to identify the modal parametes is-developed.

The nonclassical modal synthesis is derivable from a set gf constant-
coefficient linear differential equations. By comparing the predictions based on
the nonclassical modal synthesis with the measured frequency response values, the
adequacy of the constant-coefficient equations approalch may be ‘assesse:d._ On the
other hand, if the damping matrix is assumed to satisfy certain conditions, the
solution of the constant-coefficient equations is represen?:ed by the class:lhcal
modal synthesis. Thus, by comparing the results from classical and nonclassical
models, the adequacy of the classical model may also be assessed.
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SINGLE-MODE METHOD AND NONCLASSICAL MODAL SYNTHESIS

Before a multiple-mode parameter identification procedure is carried out on
a set of given data, it is useful to obtain some initial estimates on the values
of the natural frequency and the damping of the system. Traditionally such
initial estimates are obtained by the half-power bandwidth (HPB) method. One
serious drawpback of the HPB method, however, is the requirement that the
frequency response curve must be sufficiently well defined to show a clear
bandwidth at the half-power level below the peak. This requirement is often not
met because of the modal interference effect. Described in the following is an
alternative simple method that requires a minimal computational effort and a
minimal number of data points near a peak on the frequency response curve for the
determination of the modal parameters of an equivalent single-mode system.

It is assumed that near a peak on the frequency response curve the behavior
of the dam can be approximated by a single-mode system represented by

'(i+2m§d+m2q=Pe'Qt (1)
where q is the displacement quantity,  is the modal frequency, & is the modal
damping ratio, P is the participating factor, and Q is the exciting frequency of

a driving force. The steady-state solution for the amplitude of q at exciting
frequencies O, k=1,2,.L, is then

Ag = P
V(02-Qk2)? + (280Qk)?

k=1,2,.L (2)

The task is to determine @, &, and P from the measured amplitude Ak and measured
frequencies k, k=1,2,.L. It is clear that the right-hand-side of Eqg.2 is a
nonlinear function in the three modal parameters. The nonlinear expression may
be transformed into a linear one by squaring both sides and rearranging terms to
obtain

1
-t = 0* + Q2(4E20? - 202) - v P2, k=1, 2,..L (8)

and by defining three new unknown parameters: Xj = 04, X3 = 48202 - 202, and x3 =P2.
Then, Eq.3 becomes linear in the new parameters x's. The least square solution

for the minimization of the error in the quantity -Q# is easily cbtained as the
solution of three simultaneous equations in the x's (Ref. 5). The original modal
parameters @, &, and P can be obtained once the x's are known. This single-mode
parameter identification method has been used in a recent thesis (Ref. 5). During
the course of preparing this paper, it is learned that the method has been
independently developed and applied to the vibration test data of an arch dam
(Ref. 6).

Experimentation with measured data indicates that using five data points
near the peak always gives satisfactory results. In the following computation,
the single mode method is used to obtain initial estimates as the input to the
multiple mode identification procedure..

The governing equations of an N-degree-of-freedom system can be put into a
matrix form as

Mg+Cq+ Kgq = f(t) (4)

where M, C, and K are the mass, damping, and stiffness matrices, respectively,
each of size NxN, q is the displacement vector, and f(t) is the generalized
force vector. In a general nonclassical modal synthesis, the N equations are
transformed into a set of 2N first order equations and the solutions for the

displacement vector q and the velocity vector q may be written as
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o Ly S (5)

where the op is the complex-valued eigenvalues in the 2N system and may be
expressed in terms of the equivalent natural frequencies ¢, and the equivalent

damping ratios &,
on = -ongn + iopn V1 -&n2 j=1,2.N (6)

The Up is the complex-valued displacement mode shape and the Yn 1is the
generalized coordinate. For vibration tests, the forcing function is sinusoidal
with a driving frequency @ f() = F elQt and the generalized coordinates also
assume the form yp(f) = yn ei®!, where the amplitude yn is complex. By simple
substitution, the solution for yn can be easily obtained and the original
displacement vector q becomes

Win W2an Wi3n W4n .
_ Win Wan, . W3n Wan .. ot
q = Z[(Pan Won +pan0n) i(Pan WOn*'pbnw(m)]eI (7)

where the W's are functions of w,&n, and Q

Won = (0n?-Q2)2 + 400264202,  Win = onén(Q2 + 0n2)
Wan = on(Q? - 0p2 )V1 - &2, win = Q[Q2 - 0p?(1 - 2642)] (8)
Win = -2Qon2aN1 - En?

and pan and pp are the linear combinations of the real and the imaginary parts of
the displacement mode shape. In the case of classical damping, the imaginary
part of the eigenvectors vanishes, and it can be shown easily that pap=0.
For a particular displacement component q in the vector ¢, the corresponding
terms in pgnand pm can be combined into a new parameter Sp = Pan/Pon- Then the real
part of the displacement component q at a point becomes

Win Wan W3n  W4n .
q = Zponl(Sn Won + Won ) cosQt + (Sn Won + Won ) sinQt | (9)

This is the equation to be used later for parameter identification. It is seen
that for each mode included, there are four modal parameters to be identified,
thy Enr Pone and & . If an additional measurement is made at a different point,
an additional pair of parameters pm and $ will be included for identification.
If the structural response is represented by classical modes , the same equation
can be used by simply making $=0.

SYSTEM IDENTIFICATION APPLICATIONS

The displacement at any point can be calculated according to the
nonclassical or classical system equations from Eq.9. The parameters involved are
selected in such a way that an cbjective function representing the difference
between the calculated and measured displacements is minimized. The .cbjective
function is defined as the sun of squares of the vector differences in
displacements (Ref. 5). As the calculated displacements are the superposition of
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the modal contributions, it is essential that the nu@er of mode.s included be
determined appropriately. A simple method that determines the opt:.mal number of
parameters was used with success by McVerry and Beck (Ref.7) in tl:xe parametgr
identification involving the time history of earthquake records. This method is
adopted in the present study to determine the opthngl nl‘J.mber of rpodes in tl}e
frequency domain applications. Details of the application of thlls method is
given in a report (Ref.8). The system identification procedure involves the
minimization of the objective function with a gradient search method and applying
the minimization to nonclassical as well as classical system models. The results
of forced vibration tests conducted in recent years on four arch dams are
utilized for system identification studies.
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Fig. 1 Optimal Solutions for Two Sets of Santa Anita Dam Data and One
Set of Morrow Point Dam Data.
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Santa Anita Dam and Morrow Point Dam  Duron and Hall (Ref.3) tested the Santa
Anita Dam while the reservoir was nearly empty and the Morrow Point Dam while the
reservoir was almost full. Their data include both the amplitude and phase
responses. Three sets of radial responses at three points on the Santa Anita Dam
crest are used in this study. The frequency range is from 4 Hz to 10 Hz,
covering the first three modes. The optimal number of modes to fit the Santa
Anita Dam data is 5 for both the classical and nonclassical models. Two sets of
radial response data recorded on the Morrow Point Dam crest are available. The
frequency ranges from 2.5 Hz to 7 Hz covering the first six modes. The optimum
number of modes for the nonclassical case is 7, while for classical model is 8. A
part of the optimal solutions for the two dams are shown in Fig.l.

Quan Shui Dam and Xiang Hong Dian Dam The Quan Shui Dam and the Xiang Hong Dian
Dam were tested by a Jjoint team of American and Chinese reseachers for the
purpose of studying the hydrodynamic pressure caused by the vibration of the dam.
(Refs.1,2) . The dam crest responses were given in the form of amplitude response
data only. Three sets of amplitude response data are used in this study. The
frequency range used is from 2 Hz to about 10 Hz, covering the first five modes.
The optimal number of modes is 8 for both the classical and the nonclassical
models. The radial amplitude responses at two points on the Xiang Hong Dian Dam
crest are available from 3 Hz to 24 Hz. The frequency responses up to 15 Hgz,
covering the first ten modes, are used in this study. The optimal number of modes
is 11 for the nonclassical model and twelve for the classical model. A part of
the optimal solutions for the two dams are shown in Fig.2. More details on the
solutions for the four dams are contained in Ref.8.
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Fig. 2 Optimal Solutions for Two Sets of Quan Shui Dam Data and One Set
of Xiang Hong Dian Dam Data.
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CONCLUSIONS

Based on the results of this study,the following conclusions may be reached.
A systematic method for the identification of modal parameters from forced
vibration test data is developed. The method is capable of treating
multiple-mode data measured at more than one point. The method has been
applied to cases containing both amplitude and phase data and to cases with
as many as ten modes and more than seventy unknown parameters.

For the four arch dam data, the nonclassical solution fit consistently
better than the classical solution. For the two cases with both amplitude
and phase data available, the nonclassical solution is clearly much better
than the classical solution.

Comparison of the Santa Anita Dam result and the Morrow Point Dam result
indicates a small discrepancy between the test data and the nonclassical
solution when the reservoir effect is present. This discrepancy seems to
suggest the presence of frequency dependent characteristics of the dam-
foundation-reservoir system caused by the reservoir effect.

The nonclassical modes have more effects on the phase response than the
amplitude response. Thus, for accurate determination of modal parameters,
it is advisable to have both the amplitude and the phase data available.
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