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SUMMARY

A Lagrangian method which could be easily implemented in standard codes is
developed for the complicated 3-D time domain seismic interaction analysis of
concrete dams. Development of special elements for the dam body and its reservoir
interface has enabled a precise formulation of the arbitrary solid-structure
system. Water is assumed as compressible, inviscid, and irrotational. Three
dimensional viscouse conditions are applied to the reservoir and foundation bound-
aries. The method proves very accurate and agrees with the results of modern Euler-
Lagrangian analyses. Besides, site observations concide surprizingly well with such
computational results.

INTRODUCTION

It has been shown that the hydrodynamic interaction could never be overlooked
for arch dams located in areas of high seismicity (Ref.1). Due to the slenderness
of modern arch dams simplified methods could not be applied anymore. On the other
hand compressibility of water still affects the response of arch dams and is by no
means negligible (Ref.2). Furthermore the three dimensional arbitrary shape canyon
suggests FEM techniques to deal with the reservoir, and analytically known solution
is seldom applicable.

For the purpose of a time domain seismic analysis method meeting the above
desires and for which the extension to nonlinear cases be possible, contrary to the
most of works done so far,a full Lagrangian formulation is proposed. Euler-lLagrang-
ian methods are numerically tedious due to both the stability limits and the non-
symmetricity characteristics. In Ref.3 an efficient frequency domain analysis in
which Fourier synthesis is needed to get the time history is devised. That method
is not capable of nonlinear extension (e.g. due to joint opening and large deforma-
tions). Besides, the structural engineer would preferably like to be able to use
his standard FEM code for such interaction analysis. However although the full
Lagrangian approach could satisfy these needs a few problems have prevented it from
getting fully successful. First, the mathematical model of the arbitrary shape
fluid-structure interface has been immature or inaccurate, and this has introduced
significant error in the analysis. Second, abundance of degrees of freedom vis-a-
vis shortage of strain relations introduces some zero-energy modes in the response.
These modes could almost be captured by rotational constraints using reduced
integration order techniques (Ref.4). Third, if low approximating elements are used
for the fluid domain, and if the model should be extended to a large distance, the
number of degrees of freedom exceeds the economical limits.
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The aforesaid shortcomings are eliminated by the methods suggested here. A
special 3-D interface element similar to what employed in rock mechanics (Ref.5)
has guaranteed the fluid-structure interface conditions which are of prime import-
ance for correct interaction. As for the reservoir, application of the fluid
elements with the rotational constraints has minimized the number of zero-energy
modes in a way that even the impulsive modes of the system become possible to
obtain. Furthermore the high precision of the fluid elements along with the radia-
tion and refraction boundaries in three dimensions has helped considerable reduc-
tion in the sizes of the reservoir and foundation models. Shorter extension of the
foundation model is justified with the virtue of a 3-D viscouse boundary as an
extension of its 2-D model (Ref.6). And this for the first time leads to a correct
dynamic interaction analysis of arch dam for which the realistic flow of energy
out of the system for all frequency contents of waves is guaranteed. The combina-
tion of the above techniques has made it possible to analyse such systems by mere-
ly adding a few new elements to the library of existing standard structural codes.

METHODS

Fluid Madel Isoparametric 27-nade elements whose shape function is a Lagrange
family polynomial of second order are employed (Ref.4). Element stiffness matrix
has two parts. The volume contribution K is based on compressible and friction-
less water with very small displacements, and is calculated using reduced integra-
tion order.

K=/BC B dv
W W
as B is the strain-displacement transformation matrix, and C the fluid elasticity

matr@x. The second part of stiffness is contributed from thewfree surface linear
gravity waves. The fluid element mass is essentially consistent diagonal matrix as

M..= MP
11 sm

INI Ni dv , provided M=o [ dv

kk

where M, Mii,and m , stand for element total mass, diagonal mass, and consistent
mass coefficients. Matrix N. is the shape function of node i, and p is the water
mass density. frictionless fluid is assumed and the only damping sources are radia-
tion and refraction. The reservoir upstream truncation boundary should allow the
travelling waves of any frequency to pass through it. Indeed this is feasible by

iptroducing Fhe 3-D Sommerfeld boundary over there. In other words a viscouse trac-
tion is applied to such boundaries as

s=pcU

n n
where c is the velocity of sound in water and 0 the particle velocity in normal
direction. Thg underlying theory of this boundary is based on the one-dimensiocnal
wave propagation with normal incidence on the boundary. Such an assumption is
reasonably met at large enough distances.

With the same anglogy wave refraction happens at the reservoir bottom and
walls. The one-dimensional refraction for all wave types could be expressed as

dé 1 m-1 1 1+ @

e () ¢ - — oL V-Pc

o r( 2)¢ . %_a>¢ ,where o =_h _"hT "~
Db Vb+ Pec

in which Vb’ énd pb'are the reservoir banks material compressional wave velocity
and mass den51ty..a is the wave reflection coefficient, ¢ is the wave amplitude,
r is the propagation direction and m is a characteristic parameter whose value is

equal to unity for plane waves. Then the viscouse b i
reservoir banks is defined as °¢ boundary traction for the
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The above two tractions contribute to the damping force F as

T .
Fz—f N ¢ n ds=- Cext a

where Cext is the external damping matrix and &, the nodal velocity vector.

Structu;e Model For consistency and ideal compatibility between the dam and its
reservoir the upstream face of the dam elements should have 9 nodes. Therefore by
adding two extra nodes on two opposite faces of the parabolic serendipity element
we get a 22-node element whose shape function for corner nodes as well as for mid-
layer nodes (i=1-8 and 17-20) is expressed as

Ni:tzrsrisi(1+rri)(1+ssi)(1+tti)/8—(1+rri)(1+ssi)(1-t2)(3t;—2)/8
and for other mid-edge nodes (i=9-16) as
Ni:(rri+ssi)(1—rzs;+rri)(1—r;sz+ssi)(1+tti)/4

and finally for mid-face nodes (i=21,22) as

Ni:(1—r2)(1—82)(1+tti)/2

where r,s and t stand for the curvilinear coordinates with t along the dam thick-
ness direction. The corresponding integration order is 3 for the shell surface and
2 for the thickness direction.

Fluid-Structure Interface Model Three conditions (Ref.7) should be met on the
interface namely;

1) Identity of normal displacements for both fluid and solid.
2) Absence of any tangential forces.
3) Identity of normal forces for both fluid and solid.

An isoparametric 3-D surface interface element (Ref.5) is modified to satisfy the
above conditions. This element has no independent shepe function and its only cont-
ribution is a stiffress matrix K® defined as

e T T Cs1 0 0
K™ = fB D B ds ,where B=0 [NTop’—NBot] and, D= 8 832 g
n
The coordinate transformation matrix © consists of three vectors S15 So» and n as
the two tangential and the normal direction cosines of the surface. N op’ and NBO
are the shape functions of fluid and structure elements respectively Eas in Fig.1§.
Coefficients of elasticity C_, C_,, and C_, also correspond to the normal and the
tangential directions for relative displacement formulation. The interface force
vector is obtained as f=D 4, with its components f :Cn Sn’ and f =CS J 1 etc. Now
by choosing Cn: » one gets & =0 to satisfy the first condition. Also C_,=C,=0
is an appropriate choice to meet the slip condition and f,=f =0. The last condition
is also automatically fulfilled. k€ should be calculated by an integration order

equal to three.

Foundation Model Linear elasticity is applied for the 3-D foundation bodyT An
extension radius of 0.5H-0.8H was found sufficient when 20-node 3-D parabolic
elements along with viscouse non-reflective boundaries are employed. Furthermore
the compatibility with the elements of dam are ensured. It is important to mention
that due to the usage of boundary input motion the foundation mass is also account-
ed for. Damping consists of two parts; the internal viscouse part and the external
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radiation part. The non-reflective viscouse boundary used to account for radiation
could be expressed by a traction boundary condition as

fb:p £ v l.Jb
where fb is the traction in natural coordinates of the external boundary, and pf
is the rock unit masg. V is a diagonal matrix of wave velocities (two shearsand one
dilatational), and 0° is the particle velocity vector at the boundary. In fact this
viscouse boundary is the only frequency-independent non-reflective boundary that is
applicable to the three dimensional geometry of arch dam foundation (Ref.8). Indeed
by few investigations it was understood that the latter is very efficient in
absorbing almost all types of waves involved in elastodynamics. The corresponding
damping is found as follows.

f=0 fb

where © is already defined and sz[FX, f, fz] is the global traction. To find
the global velocity on the boundary we usé the relations below

Ob:GTO
T «
f= op ¢ ¥ o U

F= -7 N f ds= _Cext

is the foundation contribution to the external damping matrix. After adding the
internal damping a non-proportional total damping matrix is obtained. F is a nodal
force.

. T a T
a ,where Cext‘f N' 9 p £ Vo Nds

Equation of Motion The global equation of motion is obtained in a standard way as

Ra+Cé+M§:F‘

where F corresponds to the three dimensional seismic uniform motion of the system.
R, €, and M are the global property matrices. For such a fluid-structure system
formulation direct time integration of the coupled equation is suggested.

RESULTS

Several cases were investigated and some of them are presented here. Dynamic
pressure on a rigid wall excited by a harmonic horizontal motion is illustrated
in Fig.2. A comparative study of response histories based on the results of the
present method with that of a modern Euler-Lagrangian method (Ref.3) for the crest
motion of Morrow Point arch dam due to the Taft ground motion reveals great simila-
rities (Fig.3). Finally an actual assessment of the effectiveness of the method was
carried out. The deep abutment motion of arch dam during an actual earthquake was
used for input of the overall system. Then the calculated response of a mid-crest
point was compared with its measured counterpart. This process was carried out for
two Japanese arch dams. Significant correlations are observed as in Figures 4, 6,
and 7. In Fig.6 the very low frequency components disagreements are probably due to
the nonlinearities of rock and old concrete. On the other hand the very high
frequency components (larger than about 6.5 Hz) are influenced by the mesh limita-
tions (Fig.5). But in the interval in which the few lower modes of arch dam exist
good agreement is observed.

CONCLUSIONS
A general and relatively simple fluid-structure-foundation interaction analy-

sis method is devised. This full Lagrangian approach is applied to the complicated
system of arch dam . The accuracy of the method is verified by considering simple
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cases and by comparing with Euler-Lagrangian methods. Great effectiveness is
achieved when the method is applied to realistic arch dams. This enables a precise
and simple full-scale 3-D analysis of such dynamic systems by standard structural
analysis FEM programs. Besides, such methods could be extended to the nonlinear
level of analysis without much difficulties.
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PRESENT ANALYSIS
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Fig.7- Stream Component Accelerations of Crest Center of Yuda Arch Dam due to
Simultaneous Vertical and Stream Components of 1978 Earthquake.
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