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SUMMARY

Computational models are employed to investigate the nonlinear earthquake
induced response of earth dams. Based on the shear slice vibration concept, a series of
models are proposed to study upstream—downstream (UD), longitudinal (L) and vertical
(V) earth dam dynamic response. These models range from simple 1—dimensional (1D) to
elaborate 3D which account for gravitational effects and actual canyon configuration. Soil
behavior is represented by an incremental plasticity constitutive relation. A multi—surface
kinematic plasticity model is used so as to generate hysteretic yielding response.
Step—by—step solutions are constructed using Time Integration procedures. Numerical
results pertaining to the performance of La Villita Dam (Mexico) during the September 19,
1985 earthquake are shown and compared to actual observed response.

INTRODUCTION

Civil engineers are usually faced with various complexities when an analysis of stress
and deformation in an earth embankment is attempted. In dynamic analyses, it is often
necessary to undergo a broad parametric—type investigation in order to define a final
elaborate numerical model. Simplified procedures are particularly appropriate for such
situations and, in view of economical and/or practical considerations, may be the only
available tool.

Simple linear dynamic analysis was originally proposed by Mononobe et al. [1] as
early as 1936 for UD vibration of earth dams. Since then, similar assumptions led to the
proposal of other linear models of UD, L and V vibration [2—4] of earth dams in idealized
rectangular canyons. More recently, the above—mentioned UD vibration models [1,2] were
extended to incorporate nonlinear hysteretic elasto—plastic constitutive soil relations [5—8%.
In these nonlinear models, a Galerkin implementation of the method of weighted residuals
is adopted. The solution of the equations of motion is expanded using a set of basis
functions defined over the spatial domain occupied by the earth dam system. A
semi—discrete matrix equation is obtained which is further discretized in time by the use of
step—by—step integration.

In this paper, based on the simplified 2D linear models presented in Refs. 2—4 a 3D
nonlinear coupled vibration model is developed. The model is also extended to account for
own weight gravitational effects and represent arbitrary canyon geometry and foundation
alluvial layers (if present). An incremental multi—yield surface plasticity model is
employed to describe the dynamic behavior of soil thus generating hysteretic damping and
permanent deformation effects. The dynamic response of La Villita dam (Mexico) during
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the September 19, 1985 earthquake (M = 8.1) is investigated using the developed 3D
model.  The numerically calculated acceleration response is used in a Newmark
sliding—block—type approach [9] to account for localized deformation observed along the
dam crest.

Formulation: The initial/boundary value problem governing the response of the dam (Fig.
1) may be written as:

V-z+r=rolg+) on
along with the boundary conditions
u=90 on Ty
n-7=0 on 'y
where V - = the spatial divergence operator; 7 = 7(x,t) = generalized stress tensor;

X = {x,y,z}T = spatial coordinates; t denotes time; p = p(x) = mass density of the dam
material; u = u(xt) = {u(xt), v(xt), w(g,t)}T = relative displacement vector,

b= {g,O,O}T = body force due to gravitational own weight, g = gravitational acceleration;
0 = Q(t) = spatial domain occupied by the dam; ug = ug(x,t) = {ug(x,t), ve(xt),

Wg()'s,tr)}T = vector of input motion; I'y = part of boundary along which displacement is
prescribed; I'n = part of boundary along which stress is prescribed; n = unit outward

normal to I'h; a superposed dot denotes time differentiation, and { }T denotes the
transpose of a vector.

A simplifying assumption will be adopted in the following to reduce the above
general 3D problem to an equivalent 2D problem. The displacement and stress will be
assumed stationary along the z or upstream—downstream direction of the dam (i.e.,
9/dz = 0). This assumption, originally proposed by Mononobe et al. [1] in 1936 was also
adopted by [2—8] for UD, L and V earth dam vibration models.

A set of simplified equations may now be obtained by integrating the stress and
displacement over the z—direction (see Figure 1) and equating forces in directions x, y and
z.

prcl = G (x ex) = i (x 1) = — px(is — @) (1a)
P = G5 (x Toy) = 5 (x7yy) = — g (1b)
i — G (x7z) — G (xrya) = — pcivg (1c)

in 2, along with the boundary conditions: u = ug along the dam—canyon interface, and the
stress—free crest boundary as shown in Figure 2.

Solution: In the present derivation, it is proposed to express the solution u in the form
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in which ¢n(n=1,2,..0) are any set of comparison or admissible functions which satisfy
homogeneous boundary conditions, and ga(t) = {qx,qy,qz}I are generalized displacements.
The displacement u is to be represented to the desired accuracy by a finite number of

functions N. Following the Galerkin procedure of the method of weighted residuals,
?quation 1 along with its boundary conditions may thus be written in the following matrix
orm:

MQ+F=E (3)

in which M is the resulting mass matrix, Q is the vector of unknown generalized
displacements, F is the nonlinear internal force vector and E is the external gravitational
and dynamic (earthquake) load vector.

In this investigation, shape functions (@s, n = 1,2...N) which span the global
domain  are chosen. The functions depict a sine wave along the longitudinal direction of
the dam superposed on a Bessel Function along the vertical direction of the dam (Fig. 3).
Higher order functions will depict a higher frequency sine or Bessel. These global shape
functions are chosen herein because of their close similarity to the linear mode shapes of
uncoupled UD, L, or V oscillation of earth dams in rectangular canyons. The choice of the
above—mentioned shape functions is by no means unique and any set of functions which
satisfy the associated boundary conditions is perfectly appropriate.

Remarks: 1) Alluvium layers which may exist between the dam and the canyon bedrock
can be modeled as a shear beam following Ambraseys [2]. The alluvium zone is accounted
for using the same formulation (Eq. 1) with x equal to the height of the overlying dam at
the particular location.

2) A diagonal mass matrix would result if the solution (Eq. 3) is expanded in terms of the
linear mode shapes corresponding to the earth dam model. Analytically derived mode
shapes were employed in the context of UD analysis [5—8].

3) A constitutive model based on the flow or incremental theory of plasticity is used. The
model is capable of generating the Bauschinger effect exhibited by soil under cyclic loading.
A Ja (Von Mises) set of nested yield functions which obey a kinematic hardening rule [5]
are utilized (Fig. 4). Generated damping is purely hysteretic and independent of strain
rate. Associative plasticity is adopted. The constitutive model described above may be
substituted by any other nonlinear model deemed more accurate in representing cyclic soil
response.

Earthquake Response of La Villita Dam [11‘: La Villita, an earth and rockfill dam, is
located in Mexico 13 kilometers upstream from the mouth of the Balsas River which
empties into the Pacific Ocean. It was constructed in the period between 1964 and 1968.
An alluvial layer of varying thickness (maximum thickness of 70 meters or 230 ft) lies
between the embankment and bedrock. The dam is 440 meters (1467 ft) in length and 60

meters (196.8 ft) in height with a clay core and rockfill shells (Figure 5).

The 3D model described above is used in the section to study the coupled UD, L,
and V response of La Villita Dam during the September 19, 1985 (M = 8.1) earthquake.
The dam geometry and material properties are described in Refs. 10~12. A rock outcrop
acceleration record (?»——(:omponents%1 is taken as the input ground motion (peak input is .12
in T, .11g in L and .06g in V). The numerical response at the dam crest (center location§
is shown in Fig. 6. Computed peak accelerations in the 3—directions were found to closely
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match those actually measured during the earthquake (.7g in T, .31g in L and .30g in V),
except for the UD where significant spikes have appeared (Fig. 7) in the measured
acceleration record. The asymmetric appearance of the UD measured acceleration is
attributed [10—12] to Newmark sliding—block—type [9] deformation. Using the crest UD
computed acceleration record (Fig. 6) as input to a Newmark—sliding—block analysis the
response of Fig. 8 is obtained. As shown in Fig. 8 a permanent deformation of about 5 cms
is calcualted (matches the value actually measured) and an acceleration response which is
asymmetric in appearance (similar to Fig. 7) is also obtained.
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Figure 1. Typical Three-Dimensional Farth Dam Model.
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Fig. 5. La Villita Dam; (a) Maximum Cross-Section,
(b) Longitudinal Section.

VI-311



8 @ 2403
vy 300 " w
@ NG
O 200 0 L
Qe It 9 120
P 100 Wil a1 £ o080
s 3 il ‘ flahtd i w 000
090 fostallk Fiers s -
o I"Y'ul ‘l‘; “ ”'I]‘ | o —060+7
g -Loo ] ; gk f i b 20
- -200 f? Z -180
—~ i . 240
@ _300 Lo
o~ — ‘ — O ~3.00 ot
2 0 6 12 18 24 30 36 42 48 34 60 8 0 B 12 18 24 30 36 42 48 54 60
Time in Seconds « Time in Seconds

Fig. 6a. Computed Crest(Center) Fig. 6b. Computed Crest (Center)

Accel. (Meter/Sec/Sec)

Longitudinal Acceleration

WO NWR O

1

t

UuD

o
-
Q

Accel. (Meter/Sec/Sec)

Fig.

0

6 12 18 24 30 36 42 48 54 60

Accel. (Meters/Sec/Sec)

Time in Seconds

6c. Computed Crest (Center)
Transverse Acceleration

| J |
[% I S A VI e B AV I o I SO

(a) Computed Crest(Center)

G
= o
Bt —t——H

fmi—t

Time in Seconds’

O 6 12 18 24 30 36 42 4B.54 80

~Relative Displacement

Transverse Acceleration

VI-312

1-200 1

Vertical Acceleration

3.00
200
1.00
0.00
-1.00
-200
-3.00
~4.00
-5.00 1

-6.00 1
L

,.Il J

“'\»

J

i

’ ‘

i
|
I M |
[ I
i

September 19,85

0

Fig.

0.00

10 20

7.

30

40 50

Time in Seconds

60 70 830

Recorded Crest (Center)
Transverse Acceleration

-Q.50 1
-1.00 1
-1.50

-250 4
-3.00

~3.50 1
~4.00 1
~4.50 1
~=6.00 1

CM

UD |

-t

Time in Seconds

0

6 12

18 24 30 36 42048 54 60

b) Time History of Relative

Displacement

8. Newmark Sliding~Block Analysis;

Computed Transverse
Acceleration and Resulting Relative Displacement.



