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SUMMARY

This paper presents a practical method for the analysis of seismic stability
of earth dams considering the three-dimensional shape of the dam particularly
paying attention to the shear strain in the horizontal cross-section due to
relative displacement of the dam along its longitudinal axis. The method takes
into consideration both spatial variabilities in the dam material and geometry and
randomness of the earthquake motion. The proposed method is used to determine the
depth-wise distribution of shear stress in the horizontal cross-section of the dam
as well as that in the transverse cross-section. Such a distribution of shear
stress is in turn used to examine their effect on the seismic stability of the
dam.

INTRODUCTION

The stability analysis of earth dams during earthquake is usually performed
utilizing a two—dimensional model consisting of a representative transverse cross-
section under plane strain condition. However, when the cross—section is not
uniform as in the case where the dam is constructed in a narrow canyon and bounded
by sloping canyon walls, the effect of the three-dimensional shape of the dam can
be significant.

This three-dimensional effect is analyzed here under the assumption that the
difference of response characteristics at each transverse cross—section of the dam
and the time lag of input motion are primarily responsible for the effect. The dam
is modelled as an assembly of one dimensional shear wedges which allow for shear
deformation in the upstream—downstream direction, Then the relative displacement
between adjacent wedges is estimated. The results are given in terms of the
(a)variance of the relative displacement, (b)expected maximum value of the strain
and (c)expected value of local safety factor during earthquake.

DESCRIPTION OF THE METHOD

Equation of Motion Consider an earth dam located in a triangular canyon as shown
in Fig. 1. Input earthquake wave is considered to be vertically incident S-H wave
with its amplitude in the upstream—downstream direction. The arrival time of the
wave at the base varies according to its elevation. Herein the dam is modelled as
an assembly of shear wedges as also shown in Fig. 1. The equation of motion of the
shear wedge is then derived as follows (Ref. 1).
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pBly.2)(8%/3 t*)[us(y. t) + u.(yoz t)] = (8 /8 z)[Bly,z)Ts] (1)

i i i i Ts is the shear
here p is the mass density, B is half the width of the wedge, Ts
;tiess in the x-y plane of the wedge, and u, is the dxsplacement‘at the base of
the wedge and u. is the relative displacement to the base. The displacement of the

wedge is expressed as the sum of the modal components as
0
u. (v, 2z t) =A21Jo(/1 iz / L(y)) xi(t) (2)
1:

where Jo is Bessel function of the first kind of order 0, A : is the i~t._h mt
satisfying Jo (A ) = 0, L(y) is the height of the transverse cross-section at y
and x: is the generalized coordinate.

Spatial Distribution of Predominant Frequency and Damping Response char‘gcter'isT
tics of shear wedge represented by the resonance frequency and modal damping ratio
are dependent on the wedge location specified by y. The spatial variability of
resonance frequency o *;(y) and modal damping ratio h*:(y) as functions of y are
expressed as follows (Ref. 2).

w*i(y) = 0 (y)[1 + f(y)], h*i(y) = hi(y)[1l + h(y)] (3)

where o ; (y) and h; (y) are the mean values of » *;(y) and h*: (y). and f(y) and
h(y) are homogeneous stochastic fields which are considered to result from the
randomness of material properties. In Eq. (3), it is assumed E[f*(y)] ¢ 1 and
E[h*(y)] ¢ 1 with E[+] indicating expectation operator. It should be noted that
although f(y) and h(y) are homogeneous stochastic fields,  *:(y) and h*:(y) are
non—homogeneous because the mean values o ; (y) and h; (y) are dependent on y.
Relationships between the variance o .*.* of w *;(y) and that of f(y). and between
the variance ¢ +*.* of h*:(y) and that of h(y) are

(G-'u')z=fb‘zi()’)(lfu)zr (Uh'h‘)2= hiz(Y)(th)z (4)
where o (. and ¢ ., are the standard deviations of f and h respectively.

Spatial variability of Response In estimating seismic stability of earth
structures such as earth dams, effect of the first mode is predominant. Hence, the
first mode is considered hereafter. Taking the first term of Eq. (2), the relative
displacement u. of the dam to the ground considering spatial variability is given
as follows.

0

U‘I(Y’z’t) =-BJo(1.:2 / L(Y))I I.(y’ ) up(t—7 —n (Y)/Csu) dr (5)
-0
where £ is the modal participation factor, I*(y, z ) is the impulse response
function considering spatial variability, u, is input acceleration at the base of
the dam, 7 is the elevation of the dam base and Csz is the shear wave velocity
associated with the bedrock. The time—space correlation function Quu of the total
displacement u(y,z,t) (= u*.(y.z,t) + us(t-7 (y)/Csz)) is defined by

Quly,z,t €, 7) =Eluly,z, t)uly +& ,z, t +7 )] (6)

when? é and 1 are the spatial and time separations. Temporally spectral and
spatially correlational function Pyy and spatial correlation function of u, Ruyu

are defined as
00

Pou(y,z, £, 0) = 1/(2n )S exp(~iw 7 ) Quu(y,z, €, 7 )dz (7)
RUU(Y:Z' E ) = QUU(y'Zr E ’ax; = I PUU(Y’Z, E > W )dlt) (8)
~00

where the stationarity of u with respect to time is assumed. For the stochastic
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estimation of relative displacement of the dam during earthquake, Pyy is derived
following Ref. 2 and 3. Expanding the unit impulse response function into Taylor
series with respect to o *and h* around their mean values w , and ho. And
truncating higher terms beyond the second, Pyuy is obtained as follows.

Puu(y,z, § , @) = Sisiis (@ )exp(~iw /Csk[n (y + € ) - 7 (y)])

X A{[1/w*+8 J o(A 1z /L(Y))H(-w . ¥)][1/0*+8 J o (A 1z /L(y +& )H(w ,y+& )]

+ 4R (E)B*]o(A1z /LY))] o(A 1z /L(y +£ )H* (—w ,y)H? (0 ,y+E )

X w2 (Y)w 12 (y +€ )1 + io (hiy +6 )/w . (y +€) = hi(y)/w . (y)]} 9)
where Sisis(w ) is the power spectral density of input ground acceleration,
Ric (€ ) is the correlation function of f(y) and H(w ,y) is the first modal
frequency response function for relative displacement.
Estimation of Shear Strain Consider relative displacement u, along the longitu—

dinal (y) axis between two points specified by y and y + D at a depth z from the
crest,

up(y,z.Dt) =uly + Dz, t) - uly.z t) (10)
Then space-time correlation function Qupoup Of up is given by
Qunuu(y,Z,D, E » T ) = E[UD(YerD: t)Un(Y +E thD:t +7 )] (11)

and spatial correlation function Ruouo (= Quouvo(y,z. D, £.,0)) is given by substi-
tuting Eq. (10) into Eq. (11) and using Eq. (8) as

Ruoun(y, 2z, D, € ) = Ruv(y + D2z, ) + Ruu(y,z, € ) = Ruu(y,2z.D +¢)
- Ruv(y + Dz, £ - D) (12)

The spatial correlation function Rusuvp with respect to relative displacement along
vertical (z) axis is derived in the same way using spatial correlation function
Ryv with respect to z.

As for the strain, consider the local average 7 » of shear strain 7 defined

by Jj+D
ro (J)=(1/D) | r (J)dj = (1/D)uw(j). (j=yor z) (13)

Then the variance o ?,5,» Of rp is given by
UziDrD = (I/Dz)azuuun (14)
After the variance of shear strain is obtained, one can estimate expected maximum

value of shear strain using peak factor, PFA, derived from probability distribu-—
tion for extreme values (e.g. Ref. 4) as follows.

(7 0)asx =PFA + 0 ,0,0 (15)
PFA = / 2In(2v T) + 7 /Y 2In(2v T) (16)

where v is the apparent frequency of the process, T is the duration time of the
process and 7 is Euler’s constant (= 0.5772-:+).

Input Earthquake Motion As the power spectrum Si.is (@ ) of input acceleration,
the filtered Kanai-Tajimi spectrum (Ref.5) given below is used in which singular—
ity at w = 0 is removed to make the estimation of displacement variance possible.
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Sivis(w) = Sa(o ) (o /w )*/[{1 - (o /o )*}? + 4¢ (o /o ()?] (17)
with Sa(w ) being the Kanai-Tajimi spectrum (Ref.6) given as
Selw) =Sell + 4 2 (0 /0w )?1/[{1 = (0w /w )} + {28 o (o Jw ) }?] (18)

where S. is the intensity of white noise, ¢ . and w ., are damping ratio and
natural frequency when the ground is considered as a SDOF system. _and ¢ ¢ and w ¢
are damping and frequency parameters determined to give desired f 1lte|f- char;acter—
istics. Fig. 2 shows the power spectrum of input earthquake acceleration given by
Eq. (17), which is used in the following analyses. Parameters used are o .= 8x
(rad/sec), £ ;= 0.6 (w . and ¢, for bedrock: Ref. 7), w . = n /2 (rad/sec) and ¢ ¢
= 0.6.

Estimation of Local Safety Factor In the stability analysis of earth dams,
evaluation of local safety factor is carried out by which potential sliding
surfaces are assumed and occurrence of local fracture is estimated. Local safety
factor is defined as the ratio of available shear strength of the soil to shear
stress at each portion of the dam. Using Mohr—Coulomb’s failure criterion for the
strength of the soil and coefficient of lateral stress at rest Ko. the local
safety factors (Fs)«. and (Fs)., in the x—z plane (transverse cross-section) and
x-y plane (horizontal cross—section) are respectively given as follows.

(Fs)«.= [Ccosd + {(1 + Ke)/2}o .sind ]1/[(o ./2)2(1 - Ko)?+(7 x.)a?]%
(Fs)xy= (Ccosp + Koo .sing )/(7 «y)a (19)

where C is the cohesion, ¢ is the internal friction angle and (7 x.)« and (7 «y)s
are the dynamic shear stresses due to earthquake.

RESULT OF ESTIMATION
Local Safety Factor In the estimation of local safety factor C = 9.8 X 10* N/m?

and ¢ = 40 'are used for the calculation of shear strength. The correlation
function used in the analysis is of negative exponential form given by

Rtr(f) = 0 (1« EXD(—(f/b)z) (20)

where b is the correlation distance. Figs. 3 and 4 show distribution of local
safety factor, respectively for the cases in which the slopes of the canyon wall
are 1/1 and 1/4 at a depth of 10m from the surface. In the former case, local
safety factor in the horizontal cross-section is smaller than that in the
transverse cross-section in every portion of the dam. while in the latter case, in
the upper part of the dam, local safety factor in the horizontal cross-section is
smaller. These results show that as the level in the dam increases local safety
factor in the transverse cross-section increases while that in the horizontal
cross—section decreases. And in the portion closer to the surface, local safety
factor .in both crouss-sections decreases, where local safety factor in horizontal
cross-section tend to be smaller than that in the transverse cross-section. This
trend becomes more conspicuous when the canyon wall becomes steeper reflecting the
corresponding spatial distribution of shear strain under these circumstances.

CONCLUSIONS

This paper presented a practical method for estimating the relative displace-
mer}t and the strain in the earth structures such as earth dams constructed in a
tmar_lgulgr narrow canyon. It was shown that shear strain in the horizontal cross—
section is an important factor in the estimate of seismic stability of the dam
especially when the dam is located in a narrow canyon.
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Fig. 1 Three-Dimensional View of Earth Dam in <0005
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Fig. 2 Power Spectral Density of Input Acceleration
( Filtered and Non-Filtered Kanai-Tajimi Spectrum)

—— S.F. in Horizontal Cross-Section
------- S.F. in Transverse Cross-Section

Fig. 3 Distributioin of Local Safety Factor (BMH=1/1 10m from the Surface)

— S.F. in Horizontal Cross-Section

S.F. in Transverse Cross-Section

Fig. 4 Distributioin of Local Safety Factor (BM = 1/4) 10m from the Surface)
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