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SUMMARY

A numerical procedure for seismic response analysis of embankment dams ac-
counting for canyon geometry and variable material properties in plan and el-
evation is presented. Material nonlinearities are treated by the linear
equivalent method. The proposed procedure is a straight forward application
of the shear beam concept incorporating canyon wall restraint by means of
horizontal springs inserted along the height of the shear wedge. Some numeri-
cal examples performed with actual dam sections show good agreement with more
elaborate F.E. models, thus making it attractive for calculations at design
stage.

INTRODUCTION

Seismic response analysis of embankment dams on narrow valleys requires
consideration of canyon geometry and variation of material properties both in
plan and elevation. At present this can be best accomplished using 3-D finite
element models as proposed in (4) and more recently in (6), allowing accurate
representations of the dynamic properties of the complete embankment. While
this approach is desirable, its application at design stage may be limited by
the computational effort required, rendering more attractive other approximate
procedures that account for both horizontal and vertical shear transfer from
the base rock.

Various simplified procedures to account for 3-D effects have been pro-
posed in the past. Abdel-Ghaffar et al (8) developed explicit expressions for
the natural frequencies of a homogeneous shear wedge on rectangular canyons,
both for longitudinal and transverse displacement modes, coupling exact shear
wedge expressions with trigonometric expansions across the valley. Dakoulas
et al (2) have extended a similar concept to dams on semi-cylindrical canyons.
They have also analyzed a certain class of inhomogeneous sections (1) using a
semi-analytical approach.

Response calculations of embankment dams, however, must allow for variable
properties within the section due to variations in confinement pressures and
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materials. This paper is concerned with a generalization of a numerical inte-
gration procedure (5) for analysis of embankment dams under horizontal seismic
excitations that is capable of accounting for canyon cross section and vari-
able material properties in plan and elevation. The procedure, that follows
the linear equivalent method due to Seed and co-workers (7), has been shown to
furnish a reasonably accurate representation of earthquake-induced shear
stresses as compared to more elaborate finite element models using QUAD 4 pro-
gram in long dams. A simplified representation of the 3-D effects is accom-
plished by coupling the shear wedge model with a series of horizontal shear
beams of rectangular cross section supported at the opposite sides of the
valley. Calculations are performed numerically, thus allowing consideration
of arbitrary valley cross section.

SIMPLIFIED MODEL

An idealized form of valley and dam geometry is given in Fig.l. Canyon
walls are assumed to be prismatic with a vertical plane of symmetry, but of
otherwise arbitrary shape. The embankment is also assumed bounded by a pris-
matic surface with horizontal generatrix lines normal to those of the canyon.
The dam cross section at the vertical plane of symmetry depicted in Fig.2 is
subdivided into horizontal 1layers at evenly spaced elevations. Equivalent
shear modulus within each layer is evaluated as a weighted average of values
for segments of the layer in terms of the mean effective confinement pressure
and of earthquake-induced shear strains. Dynamic equilibrium of the shear
wedge in the vertical plane is governed by:

4 ; 2 -
dy[b(G7+cX)]—gbua—0 (1)

in which ¥= 2u/dt = the shear strain,u = the horizontal displacement along
the canyon; y = the vertical coordinate; ¥ =2¥/3t = the shear strain rate; ¢ =
viscous damping coefficient; b = width of the shear beam as a function of vy;
¢= mass density of the layer; iy = ig + i = the absolute acceleration at
elevation y, and iig = the acceleration at the base.

_To introduce the restraining effect on the shear wedge provided by the
horizontal shear beams, it is assumed that the horizontal displacement has a
parabolic distribution across the canyon:

ul x, ¥) = ulo, y) (1 - (y/B)%] (2)

This approximation implies a linear variation of shear with x and a
constant change of shear between adjacent wedges. The restraining effect
on the central section, T, is then given by:

= B b0, 3

-]

This term is then introduced into eq. (1):

Gb
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For a base acceleration of amplitude U ei“’t, assumed uniform along
canyon walls, eq.(4) reduces to:

d_ 2 Gb
day (PE*T) + (pbus - 23—2-)0-91: i =0 (5)
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Eq.(5) is now solved numerically by introducing piecewise linear inter-
polation expressions for U and ™, leading to the following recurrence re-
lations:

r 1 oxpy N Tibs Ay L m
i+1=D[(G b)i i_?bmiw(ui+ 4)+9bm i s+BZGAiUi] (6a)
m
Aj
1 =Y Ty v T) 5 (6p)
in which D =(G*b)j,q +9bmw2 Azillt i bp and Bp are mean values

of b and B between layers i and i+l; O3 = yj41 - V¥i- The solution vector
v ={\" , U} is expressed in terms of a particular solution for the acceler-
ation input {ig designated Vy, and a homogeneous solution Vi obtained for
ig = 0:

V=V +c¢V (7)
o 1
The integration procedure is completed introducing the boundary conditions
of the problem, whereby the shear strain at y = O is zero, and the relative
displacement at the base (y = H) is also zero. These conditions lead to the
actual value of ¢. Once U is obtained, the absolute acceleration response is
given by:

¥ =t -o’u (8)

The equilibrium equation in the longitudinal direction of the dam is simi-
lar to eq. (5); the restraining effect term T is similar to that given by eq.
(3), but G is replaced by E therein; displacement and all associated variables
refer to the longitudinal axis of the dam.

The solution in the time domain is obtained through the inverse FT of re-
sponse variables U, U and T'.

Following the linear equivalent method, the maximun strain Xmax for each
layer is obtained, and the sear modulus and damping is recalculated from ex-
perimental curves due to Seed and co-workers (7) as function of the equivalent
shear strain Yy, = 0.65 blmax- The complete integration procedure is re-
cycled until convergence of the shear modulus and damping is reached in all
layers.

NUMERICAL RESULTS

To test the accuracy of the proposed procedure,the acceleration transfer
function at the apex of a homogeneous triangular wedge is calculated. Results
for various canyon shapes and for the indefinite section (plane) are given in
Fig.3. Table 1 shows natural frequencies associated with the peaks and those
given by analytical expressions (3). A total of 60 layers was used in the
model. Good agreement is found, assessing the ability of the proposed pro-
cedure to incorporate 3-D effects into account in seismic dam response. Fur-
ther numerical examples are presently under way to compare results of the
proposed model to actual field response measured at the Infiernillo Dam and
also to response calculations performed with a 3-D finite element model.
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CONCLUSIONS

A simplified procedure for seismic response analysis of embankment dams
accounting for 3-D effects has been presented. The procedure is simple, yet
is capable of representing main features of the restraint provided by narrow
canyons. Numerical examples performed in idealized cases show good agreement
with semi-analytical solutions, but further testing is required to assess nu-
merical results obtained with actual measurements in the field. The proposed
scheme is well suited for calculations at design stage since it requires very
modest programming effort affordable with small computing equipment.

REFERENCES

1. Dakoulas, P. and Gazetas, G., "A Class of Inhomogeneous Shear Models for
Seismic Response of Dams and Embankments™, Soil Dynamics and Earthquake
Engineering, Vol. 4, N° 4, 1985, pp 166-182.

2. Dakoulas, P. and Gazetas, G., "Seismic Shear Vibration of Embankment Dams
in Semi-cylindrical Valleys"™, Earthquake Engineering and Structural
Dynamics, Vol. 14, 1986, pp 19-40.

3. Dakoulas, P. and Gazetas, G., "Vibration Characteristics of Dams in Narrow
Canyons*, Journal of the Geotechnical Division, ASCE, Vol. 113, N° 8,
1987, pp 899-904.

4. Mejia, L.H., Seed, H.B. and Lysmer, J., "Dynamic Analysis of Earth Dam in
Three Dimensions"™, Journal of the Geotechnical Division, ASCE, Vol. 108,
N° 12, 1982, pp 1586-1604.

5. Prato, C.A. and Delmastro, E., "1-D Seismic Analysis of Embankment Dams",
Journal of the Geotechnical Division, ASCE, Vol. 113, N° 8, 1987, pp
904-909.

6. Romo, M.P. and Villarraga, M.R., "Analytical Model of Seismic Behavior of
Infiernillo Dam," Instituto de Ingenieria Report, UNAM, January 1988 (in
Spanish).

7. Seed, H.B. and Ydriss, I.M., "Soil Moduli and Damping Factors Ffor Dynamic
Response Analysis", EERC 70-10, Earthquake Engineering Research Center,
University of California at Berkeley, California, Dec. 1970.

8. Abdel-Ghaffar, A.M. and Scott, R., "Dynamic Properties of Earth Dams",
Proceedings of the 7th World Conference on Earthquake Engineering,
Istambul, 1980, Vol. 3, pp. 371-378.

TABLE 1. COMPARISON OF FUNDAMENTAL PERIODS
Vibration along canyon axis

| Case | Analytical (3) { Proposed |
! l 1L |
|Plane shear beam | . = 2.61 H/vs | To = 2.64 H/vsl
|Semi-cylindrical canyon | To =2 H/vs | To = 2.10 H/vs|
|Rectangular canyon B/H=1| To = 2.19 H/vs | To =2.21 H/vsi
|Triangular canyon B/H=1 | T, = 1.60 H/vg } To = 1.65 H/vg|
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Fig. 2 Cross section discretization

Fig. 1 Canyon Geometry
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Fig. 3 Acceleration Transfer Functions at Midcrest
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