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SUMMARY

Presented in this paper is a method of analyzing nonlinear dynamic response
of structures considering the effects of foundation and hydrodynamic interactions.
The method is a finite element/finite difference hybrid scheme in which finite
difference part computes the radiation of waves into infinity. It is shown from
numer-ical results of simple scalar equation that the proposed method gives better
results than other numerical methods. The combined effects of nonlinearity and
interaction with foundation and fluid on the dynamic response of structures are
investigated by the proposed methods.

INTRODUCTION

In the analysis of the dynamic responses of systems which include infinite
domain using finite element or finite difference method, it is necessary to
introduce the boundary which does not reflect the radiating waves. The non—
reflecting boundary can be solved fairly well in numerical procedures which work
in the frequency domain. But for .non-linear dynamic analysis of structure, it is
desired to develop the efficient scheme which works in time domain and absorbs all
types of waves.

This paper reports a method of time domain analysis for semi-infinite system.
The method can deal with general wave propagation problems of semi-infinite
structure-fluid-foundation system in one and two dimension and easily be extended
to three dimensional problem. The method is firstly applied to simple scalar wave
equations and the results are compared with those of other methods which make use
of direct integration in the time domain. Next, the method is applied to two-
dimensional dynamic response analysis of a concrete dam and the combined effects
of nonlinearity and interaction with foundation and fluid on the response are
investigated.

NUMERICAL METHOD

The proposed method is a hybrid finite element/finite difference method. The
finite element part deals with the near field part and the finite difference part
deals with the far field part(Fig. 1). In the near field,part, ordinary finite
element scheme is used. Joint elements are incorporated to deal with crack
opening or slip/separation boundary conditions. Newmark’s 8 —scheme is used for
time integration. The scheme used in the far field part is described below. At
first, the equation of motion for visco-elastic solid and water are transformed
into first order hyperbolic systems(Ref.1).
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where ® is velocity potential, u is horizontal velocity, V is vertical velocity,
¢ x and ¢ ; are normal stress, and 7 is shear stress. Then, the transformation of
coordinates are applied to the system to map the unbounded domain into a rectangle
through the following’relation.

X = :’l/a(E )d ¢ for Ix"| < Lx

z =§Z 1/b(n )dn for |z'| < L.

a(§§)=1 for Ix"| £ 1Ix < Lx

b(7) =1 for |z'] € 1x {L: (2)

where x and z are the original coordinates, x .,y are transformed coordinates and
a(é ) and b(n ) vanish as | ¢ | and | » | approaches Lx and L.. The resulting
equation are given as follows.

1P /it = a(x )Ax (8D /ix") + b(z )Az(d® /3z")

aV/it = a(x")Bx(dV/ix™) + b(z")Bz(3V/iz") (3)

These equations are solved by Strang’'s formula for Lax-Wendroff differentiating
scheme(Ref. 2).

Lx(k; H; Bx)Lz(k; Hw: Bz)q)(t)

D (t + k)

V(t + k) = Lx(k; H; Ax)Lz(k; Hws Az)V(t) (4)
where Lx, L: are Strang’s one step difference operator in x and z direction. K is
time increment, H is mesh size for solid and Hv is mesh height for water. The
stability limit is approximately given as follows.

k = min(H/Ve,Hw/C) (5)
where Ve is the velocity of dilatational wave in solid and C is the velocity of
sound in water. The input of seismic wave is treated as follows. The total motion
is composed of incident wave V, and radiation wave V.

V=V, + Vi (6)
The incident wave V, is assumed to be known and is inputted at boundary A in
Fig. 2. Only Vi is computed on and outside A by Eq. (4), while V is computed on
and inside A'in Fig. 2. where A"is located just one mesh width within A. In the
computation of Vyx on A by Eq. (4), (V- V,) instead of V is used on A", and
(Vg +V,) on A is used to obtain V on A'.
COMPARISON WITH OTHER METHOD
The proposed method is applied to the following simple scalar equation.

32d /3t + q(ds/dt)= 32D /ox® + 3D /iz? (7)
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The results are compared with those by other two numerical methods in time domain
One is the viscous boundary method, where viscous dashpots are used to absorb
radiating waves. The other is the superposition method, where the boundary
reflection are cancelled out by superposing the solutions corresponding to
constant-velocity and constant-stress boundary conditions incrementally at the
boundaries. The initial and boundary conditions are as follows.

®(t.x) =0 (t=0 and 0 < x { o0)

@ (t.0)

It

f(t) (t>0) (8)

The mesh width and time increment are fixed to be 0.1 and 0. 08, respectively.
Artificial boundary is set at x = 1.0. For superposition method, the length to
superposition zone is set to be 0.5. Results are shown in Figs. 3 and 4. When no
internal damping exists(g = 0), viscous boundary method gives good results, while
several percents of error arises when internal damping exists(q = 0.2). The
results of superposition method shows drifting and dose not converge to true
solution. The proposed method gives good results both with and without internal
damping. Numerical example of the application of the method to the semi—infinite
solid to impulsive surface loading demonstrates the good performance of the method
in two dimensional wave propagation problem (Figs. 5. 6).

RESPONSE OF CONCRETE GRAVITY DAM

Proposed method is applied to the dynamic response analysis of gravity dam.
Analytical model is shown in Fig.7. Height of the dam is 140m. Only FEM part is
shown in the figure. The material properties are shown in Table 1. The slip/
separation boundary conditions of construction joint and contact plane between dam
body and bedrock are as follows.

on =Kn*en if Knten<g on

on=20 if Kn'en) on

T=Ks(€n"7’s) if Ks(T’s“To)gTY

t = 1y(rs —7ro)/lrs — 7ol if Ks(rs—70) 2> 7v (9)
where r is shear stress, on is normal stress. 7 v = c¢c—tand, ¢ is friction

angle, Ks and Kn are appropriate coefficients, and r s, en, 0y, 7 v, 7 o are
relalive displacements in Langential and normal direclion, slrength of joints in
normal and tangential direction, and residual slip, respectively. For non-linear
analysis the values of tan¢ .c, ¢ v are assumed to be 0.8, 30kgf/cm* and 20kgf/cm®.
For linear analysis., ¢ and o v are set to very large value. Safety factor n for
sliding is assumed to be as follows.

n=§ryds/jrds (10)
Results are shown in Table 2. From the results, the followings are observed.

(1) Water—Dam interaction increases the response (decreases safety factor)
for both linear and nonlinear case.

(2) As the Young's modulus of bedrock decrease, the response decreases for
both linear and nonlinear case.

(3) Slip and separation do not significantly affect the value of safety
factor
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A method for treating wave propagation in infinite media in time domain is

CONCLUSIONS

proposed. The method is compared with other two existing time domain methods.

The proposed method give better resulis than the other two methods for both with

and without internal damping. The method is now applicable to dynamic response
analysis of two dimensional semi-infinite structure-water—foundation system.

applied to earthquake response of concrete gravity dam.
linearity due to slip and separation does not affect the response significantly.

REFERENCES

It is shown that non-—

1. Shiojiri, H., Nakagawa, T. T., A Method for Time-Domain Analysis of Semi-

Infinite Foundation-Structure-Water Systems,

Nagoya, A. A. Balkema, Rotterdam, Boston, (1985).

2. Strang, G., On the Costruction and Comparison of Difference Schemes, SIAM J.

Numer. Anal., 5 (1968).

Table 1 Material Properties

Numerical Methods in Geomechanics

Density(kgf: sec?/cm*)

Young’'s Modulus(kgf/cm?)

Poisson’'s Ratio

Dam 0. 0000025

300, 000

0.2

Bedrock 0. 0000026

7,5000 ~ 600, 000

0.2

Table 2 Safety Factors for Sliding

Linear Water| Young’'s Modulus| Max. Accel. | Safety
Case | or Nonlinear| Level| of Bedrock Factor
(m) (kgf/cm*) (gal)

1 L 140 750, 000 200 4.84
2 L 140 150, 000 200 4.08
3 L 140 300, 000 200 3.66
4 L 140 600, 000 200 3.48
5 L 140 300, 000 300 3.04
6 N 140 75. 000 200 4.84
7 N 140 150, 000 200 3.98
8 N 140 300, 000 200 3.28
9 N 140 600, 000 200 3.04
10 N 140 300, 000 300 2.65
11 L 0 300, 000 200 10. 80
12 N 0 300, 000 200 12.70
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Fig. 5 Surface Loading on Semi-infinite elastic body
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Fig. 6 Response to Surface Loading
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Fig. 7 Concrete Dan Model



