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SUMMARY

This paper is concerned with the problem of determining the optimum controller loca-
tions in flexible (building-like) structural systems undergoing earthquake ground motion and
provided with a number of vibration suppression actuators that are distributed throughout the
structure. It is assumed that the controllers deliver continuous-time forces, and that the force
magnitudes are determined in a “state-feedback” fashion. The feedback matrix is obtained by
optimal control methods, with quadratic optimization criteria.

1. INTRODUCTION

The active control of flexible structures is one of the most important problems of current
research in several engineering disciplines.

As far as Civil Engineering structures are concerned, the needs for structural integrity,
enhancement of human comfort and safety, and reduction of the structure’s potential damage
from disturbances due to earthquakes, immediately bring active control into the picture.

The present work is motivated by the work described in Masri et al.,(Ref. 1, Ref. 2),
on the pulse control of flexible structures. These references deal with structures linear with
finite degrees of freedom, or nonlinear structures, using local displacement and velocity mea-
surements. The control forces are pulses of a short duration compared to the fundamental
period of the structure. The pulses are enacted at certain times during a random excitation
history. The main pulse parameters are: the pulse duration, the pulse time-shape, the force
magnitude and the controllers’ locations. Once these parameters have been decided upon, the
algorithms presented in the above references yield the pulse-firing time instants, in an “open-
loop” fashion, so that the structure’s response remains within predefined bounds. Simulations
and ezperimental results suggest that the location of the controllers plays an important role in
the problem.

Here we isolate the controllers’ location problem and give a solution to it, which is both
justified theoretically and validated by simulations. In order to achieve this, we relax the
assumption of using pulses as control forces. We assume controllers which deliver continuous-
time forces, so that the force magnitudes are determined in a “state-feedback” fashion. We
develop an algorithm which solves the controllers’ location problem for any linear structure
with finite or infinite degrees of freedom.

Within this framework we examine two cases:

(i) a continuous Euler-Bernoulli beam with random base excitation
(ii) a chain-like flexible structure with 3 degrees of freedom whose base is subjected to random

excitation.
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2. PROBLEM STATEMENT

2.1 _Model of a Continuous Beam with Random Base Excitation : Consider a cantilever
Euler-Bernoulli beam, whose base is subjected to random acceleration along the y direction
(fig. 1). Let y(¢) denote the distance of the base point from a global coordinate system (z,y); z
the distance of a point on the beam along the x-axis; w(z, ¢) the elastic displacement measured
from the undeformed beam position; EI the beam’s flexural rigidity; p(z) = p = constant the
beam’s linear density and f(z,t) the control forces.

Let the control forces f(z,t) act pointwise along the length of the beam at the points
{&, ..., &} Then f(z,t) can be approximated as the sum of delta functions: f(z,t) =

Zf___l 8(z — &)u;(t). Assumming that w(z,t) is small, and using eigenfunction expansion,

with @;(z) representing the : — th eigenfunction, we get the equations of motion for each

. u;(t)
2= 1)("")+(°) (5 0 20)
= = 2 . ) v(t) "' . . e (2.1)
(‘h w; 0 q; bz Bll .n Blk LLk(t)
where v(t) =§(t), b = - [idi(z)dz, By = 1i())
Concatenating egs.(2.1) for every mode ¢ and assuming a small damping (; for each one,

we obtain an infinite dimensional linear system, which if truncated at the first N modes yields:

- . _ . 0 1 . .
g=A¢q+Bu+bv with A= blockdxag(_%2 -2Ciwi> ,i=1,..., N (2.2)
and with similar definitions for B, 4. In (2.2), v is the driving random input and u is the
vector of control forces.
2.2 _Model of an N DOF Structure with Random Base Excitation: = Consider an N de-
gree of freedom (NDOF') chain-like structure (Fig. 2). The equations of motion for this system

are: Mj+Cy+Ky=—-Ms+f (2.3)

mode:

The random base acceleration 5(¢) plays the role of v(t) appearing in eq.(2.2) and is assumed
to have the same statistical properties as v(¢). Assuming proportional damping, (2.3) can be
decoupled and written as a first order equation:

¢=Ag+bni+Bu,  g=[q, 41, ranidn]T (2.4)
where §y = ®¢ , ® is the decoupling matrix and the definitions of A, by, B are obvious. It
is seen that eq.(2.4) has the same structure as (2.2) of the previous section. Hence a common
control law will be developed for both systems (2.2) and (2.4). This control law is presented
in the next section.

2.3 Control Law: In the development of the common control law for both systems (2.2)
and (2.4) we assume full information on the state g, which is used for the feedback loop
construction. The random excitation v(#) of (2.4) ( respectively the random base acceleration
5(t) of (2.5)) is taken as a white noise vector process of intensity V:

E{v(t v(t+7)} =Vé(r)>0.

The system is taken initially at rest, ¢(0) = 0. We consider a quadratic performance criterion

of the form: <
Riq+ ——u Tu) dt :
=£{[ " J (2.8)
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In (2.8), R: is the state weighting matrix and ps is the “cost” of the control energy. Now
suppose that the controllers’ locations have already been selected. Using the well established
stochastic regulator theory with quadratic criteria, we have at optimality (Ref. 3):
w=—Fq, F=p,BTP (2.9)
and P is the solution of the matrix Riccati equation: R;—p, PBBTP+ ATP+PA =0. The
values of u(t) in (2.9) will minimize criterion (2.8).
3. LOCATIONS OF ACTUATORS

The control law (2.9) was obtained considering the locations &; given. In this section we
present a procedure which will yield the optimal locations of the controllers. Here the term
“optimal locations” is used in the sense that these locations will minimize the value of the
criterion J, among all the possible actuator locations.

To achieve this, we divide the continuous beam into M intervals (not necessarily of the same
length). Let {m;,m2,...,mar} be the set of points at which the beam is divided. In principle
the number M can be very large, so that every point of the beam can be represented. (In the
case of an N DOF structure, M = N ).

By using the optimal control law (2.9), the minimum value of the criterion J turns out to be
(Ref. 3):  J° =Tr(PV), where Tr is the matrix Trace operator. Now let

0 0
¢1(m1) ¢1(mM)
B = 0 0

(2Nx M)

o Lon(my o dn(ma)
and the characteristic function Y;, defined as
0, if no actuator is placed at' m;

A
Xi = x(ms) = 1, if an actuator is placed at m;
Following the development presented in (Ref. 4), we summarize the actuator location algo-

rithm:

The characteristic functions x; of the optimal actuator locations satisfy the inequality
M M
YNxi0E>) x:Q,  for all admissible x; (3.1)
i=1 i=1

where [ 2 diag{x:}, Q}; are the diagonal elements of the matrix Q* = BTP*&*TP*B and
the matrices P*, ¥* are the solutions for P, ¥ of the canonical equations
Ry —p2PBBTP + ATP L PA=0 (3.2)
VT ~ p; BLBPTW + p, ¥PTBLBT + A% + 94T =0 (3.3)
The admissible x;’s are those satisfying va:[l x;i = k , where k is the total number of
controllers used.

4 SIMULATION RESULTS

4.1 Simulation of a Continuous Beam with Random Base Excitation: The results pre-
sented in this section are from Chassiakos,(Ref. 4). The model development is given in Sec-
tion 2.2. For this simulation full state information was assumed. The values of the system
parameters are taken from Sakawa et al.,(Ref. 5), in which an experimental verification of
these values was also performed: EI = 2.04 Nm2, p = 4.05 x 107 kg/m?, | =1.05 m.
In addition a small internal damping 6; = 5.87 x 10~* was assumed, so that the damping
coefficient for each mode was calculated as {; = §;w;. The results presented here, cover four
simulation runs. A four mode model (i.e., 8 states) was used. The random base excitation has
duration 10 sec and is considered a zero-mean white noise process with standard deviation
o = 2 (Fig. 10).
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The time responses of the beam’s tip, with and without control are shown in Figs. 3-6.

Run  No of  Act. p2  Value of

Between runs, several parameters were var- act. loc. criterion
1 0.2 1 7.6673
e The number of controllers 1b 1 1.0 1 0.6935
1lc 1 1.0 20 0.2153
2 09,1.0 20 0.1840

ied, namely: la

e The location of the controllers
o The control weighting coeflicient, p,.

Table 1 summarizes the parameters used Table 1: Continuous Beam

for each run.
4.2 Discussion: In runs la, 1b, 1c we consider one controller at various locations, whereas
run 2a deals with two controllers.

e Run la (Fig. 3) is performed with the controller arbitrarily placed at & = 0.2.

o The location algorithm, yields £&; = 1.0 as the optimal location (Fig. 4). Comparison
of Figs. 3 and 4 shows clearly that the location obtained through the algorithm, gives
much better responses.

e In run lc (Fig. 5) the value of p; was changed from 1 to 20, and this reduces the response
amplitudes even further, as expected from the stochastic regulator theory.

e In run 2a (Fig. 6) two controllers are used. The location algorithm yields the optimal
values (&1, €2) = (0.9, 1.0). The controllers now affect the second mode amplitudes as
well, and we obtain a smaller value of the criterion and very small displacements.

4.3 Simulation of a 3 DOF System with Random Base Excitation:  The results of this sec-
tion are taken from Chassiakos, (Ref. 4). The model development is given in 2.2. For the

simulation purposes the following numerical values were used:

m = diag{2,2,2} lbsec?/ft Run  Noof Act. p; Va}lue. of
act. loc. criterion

4 -2 0 la 1 1 20 16.5979

K= -2 4 -9 X 103 lb/ft lc 1 3 20 8.7701

0 -2 2 2¢ 2 (2,3) 20 7.0786

C=aK, a=0.0014 sec Table 2: A 3 DOF System
Table 2 summarizes the simulation parameters used for each run.

In run la (Fig. 7), a controller was arbitrarily placed at the 1st station. The algorithm
correctly obtained the optimal location as being the 3rd station (run 1lc), and the value of the
criterion was reduced by 50% compared to run 1la.

Simulation run 2c, deals with two controllers. The placement algorithm when applied to
an initially arbitrary location (e.g., location (1,2)), yielded the optimal placement (locations
(2,3) in this case). The criterion is further reduced to J = 7.0786. However the reduction from
J = 8.7701 in run (1c) to J = 7.0786 in run (2c), does not justify the use of one additional
controller. Nevertheless the dramatic reduction of J = 16.5979 in run (la) to J = 8.7701 in
run (1c), shows the power of the optimal location algorithm.
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