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SUMMARY

A simplified procedure is presented for assessing rational values of
behavior factors for the design of steel structures in seismic areas: the
procedure is based on the comparison between the results of linear and non-linear
structural analysis and does not require a quantitative modeling of structural
damage up to collapse. Non-linear dynamic analysis is based on numerical models
which have been calibrated on the basis of extensive experimental testing. Some
examples are shown with reference to cantilevered columns and concentric bracing
systems.

THE BEHAVIOR FACTOR: DEFINITION AND ASSESSMENT METHODOLOGY

Most of modern codes for design in seismic areas (Refs. 1, 2) prescribe, for
the medium and low structural frequency range, a design response spectrum of the

type
S, (T,v) = a; R(T,v) / ¢ (1)

where R(T,v) is a normalized response spectrum, a, is the maximum ground
acceleration and q (>1) is a coefficient which accounts for structural behavior
in the dynamic nonlinear range.

The value of the behavior coefficient is usually stated as the ratio

q-= au/ a, (2)
where a is the peak ground acceleration leading to the attainment, as detected
by lineaf elastic analysis, of the design resistance, while a_ is the one leading
to structural collapse. The a, acceleration must be regarded as the average upon
the values obtained by exciting the structure with a set of independent
accelerograms which are compatible, in terms of frequency content, with the
elastic response spectrum defined by the code.

Some inconsistency can arise in the application of definition (2) to the

case of structures which are subject to significant geometric effects due to
vertical loads (P-A effects), as is often the case of steel structures.
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For example, in the simple case of a cantilevered member bearing a lumped mass
and subject to a vertical 1load, the design bending moment due to seismic
excitation can be derived, from (1), as

F=aa/ g+ P a (3)
a and B being coefficients depending on the R(T,v) spectrum and on the results of
linear elastic analysis. The term B a, arises from the P-A effect; this is in
fact related to the "actual" expected relative displacements, which can be
estimated directly on the basis of elastic analysis.

Conversely, if C 1is the design flexural resistance of the considered

structural element sized to resist a peak ground acceleration a,, the behavior
factor which is inherent in the design equals (from (3))

q = a a,/ (C - Bag) (4)

Letting g=1 and F=C in equation (3) the value of peak ground acceleration a_can
be also computed as Y

a=20_C +
v / (a + B) (5)
consistently with the above definition.

To state the maximum acceptable value q of the behavior factor equation (4)
can be rewritten for ag= a, obtaining

g=a a,/ (C- Ba) (6)

Deriving C from eq. (5) and susbstituting in (6) & can be finally expressed as

~ a
g=a/a - (7)
u Ty o+ B (1 au/ ay)
It can be observed that expression (7) leads to the definition (2) of
behavior factor only in absence of P-A effects, i.e. for B=0; in fact, by using
expression (2) in (6) the resistance C is obtained as

which contrasts with expression (5) and appears to be unnecessarily conservative.
On the other hand, definition (2) appears to be consistent with the evaluation of
the internal force as

F=(a+B)a/gq

The last expression, however, appears to be physically questionable, since the
penefit of ductile behavoir affects structural accelerations, accounted for by
term a, but not relative displacements.

Regardless of the adopted definition of the behavior factor, the main
difficulty for applying the described methodology 1lies in the necessity to
perform a large number of dynamic structural analyses (experimental or numerical)
up to collapse, in order to determine a . Experimental analyses, in fact, must be
obviously restricted to a relatively small number of prototype structures, while
numerical modelling of large-scale structures appears presently able to
efficiently describe the overall nonlinear behavior of structural elements but
not to account for the complex global and local damage processes which lead to
structural collapse. Therefore the collapse of a structural element is usually
detected by analyzing "a posteriori" the results of dynamic numerical
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computations, on the basis of collapse criteria involving response parameters
such as dissipated energy or some definition of ductility demand. Even the
calibration of such failure criteria, however, is far from well established, at
least at the level of reliability that would be necessary for coding purposes.

For all these reasons a simplified procedure for g-factors statement which
involves a ‘"conventional" failure definition has been developed and tested for
simple structural systems.

THE PROPOSED SIMPLIFIED PROCEDURE

The method (see Ref. 3) 1is suggested by the observation that for many

structural systems an increase in the design g-factor (starting from unity) first
corresponds to a decrease of structural nonlinear response with respect to
linear; a further increase in the q value, however, leads to the inversion of
this trend, until, beyond a value g, the inelastic response becomes more severe
than the elastic one. _
According to the proposed procedure ¢q is the maximum acceptable value of the
behavior factor, under the condition that the corrisponding response be
compatible, at least from a qualitative standpoint, with the ductility and energy
dissipation capabilities of the structure.

A more detailed description of the procedure can be summarized in the

following steps.

a - Choice of a reference peak ground acceleration.

b - Choice of a reference parameter suitable for the comparison between elastic
and inelastic response (e.g. interstory drift).

¢ - Design of a set of structures on the basis of the above peak ground
acceleration and of the rules prescribed by the code at study. These
structures differ for the design g-factor only; this can be accomplished, for
example, by fictitiously varying the yield tension.

d - Computation of the elastic peak response Ve in terms of the parameter chosen

at point "b".
For each structure (i.e. for each g wvalue) the following steps are then
performed.

e - Computation of the inelastic peak response vy this is obtained via averaging
upon the responses to a set of independent aCcelerograms, compatible with the
elastic response spectrum defined by the code.

f - Comparison between v_and v..

The value gq of the fehavior factor is finally defined as the maximum value

satisfying the condition vi< Vg

The described procedure suggests the following considerations.

- The choice of modifying the structural resistance in order to vary the behavior
factor (point "c") corresponds to decreasing the value of a_ in expression (7)
until the structure actually collapses under the action of b4 previously stated
value a, (point "a") of peak ground acceleration.

- The value of the behavior coefficient is mainly stated on the basis of the
dynamic nonlinear behavior of the structure, by assuming as conventional
ultimate 1limit state the corresponding linear elastic response. The actual
capacity of structural elements to withstand inelastic deformations is only
taken into account by means of a qualitative comparison with the deformations
implied by the choice of q as behavior factor. This is advantageous until
precise quantitative models of damage and collapse will be available, but leads
to inherent conservatorism. It must be noted, however, that beyond the q value
the nonlinear response often increseas, as a function of g, in a very sharp
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way, making a a close estimate of the "true" maximum acceptable behavior
factor.

- The results obtained are dependent on design rules other than the behavior
factor value._ It will be shown, for example, that in the case of cantilever
members the g value is strongly affected by the way in which P-A effects are
accounted for in the design.

Some results are presented hereinafter about the application of the proposed
procedure to the statement of behavior factors for cantilevered columns and
concentric bracing systems: the structural schemes here considered are simple but
are deemed of interest in view of the uncertainties related to their dynamic
behavior.

EXAMPLES OF APPLICATION

Dynamic non-linear analysis of cantilever columns and concentric bracing
systems have been performed according to the following numerical modeling.

Cantilever columns The model is composed by a rigid linear element having a
lumped mass on top and connected to the ground by means of a deformable cell: the
bending stiffness and elastic 1limit rotation of the cell are calibrated by
equating the natural frequency and elastic limit bending moment of the model to
the ones of the real bar. The model accounts for second-order effects due to
vertical load and for viscous damping, assumed equal to 3% of critical.

The behavior of the cell in the non linear hysteretic range is modeled (see
Ref. 4) by discretizing the column section in a number of finite areas: each area
follows a constitutive law which accounts for non linearity, Bauschinger effect,
isotropic and kinematic hardening. Damage modelling includes low-cycle fatigue
and fracture as well as local buckling. All columns were designed first by
neglecting P-A effects and then by taking account of it, both in terms of
deformability and of resistance.

Concentric bracing systems Single D.O.F. bracing systems have been considered:
these are modeled as rigid pinned frames having two cross diagonal bars connected
at midspan. Inertia is concentrated on top of the frame, while viscous damping is
taken equal to 3% of critical. For each diagonal bar the model described in Ref.
S and 6 has been adopted: this consists of two rigid elements connected by a
deformable cell. The flexural elastic stiffness and elastic limit rotation of the
cell have been obtained by equating the Euler load and the bending moment at
elastic limit of the model to the ones of the real bar. The behavior of the
deformable cell in the inelastic range is modeled according to the same criteria
as quoted in the previous section. All bracing systems were designed by taking
account of a single diagonal bar, both in terms of resistance and of stiffness.

Discussion of results The obtained results are summarized in figures 1 and 2.
Fig. 1 refers to columns having slenderness A=100, but with different section
shape, natural period and axial to critical load ratio. Fig. 2 refer to
concentric cross bracing systems having different section shape (back to back
channels or angles) and slenderness.

Each curve represents, as a function of the design q factor, the ratio of the
peak inelastic response v. to the elastic response v. = v / q: the ratio v./ v
can be regarded as the dctual ductility demand impgsed Sy the seismic action?
while q represents the ductility implicitly assumed in the design. From the
above definition of v_ it can be also noted that points on the bisecant of each
graph satisfy the coRdition Vi Ve The maximum acceptable value q of the
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behavior factor can thus be obtained as the abscissa of the point of intersection
between the bisecant and the numerical simulation curve.

As concerns the behavior of the cantilevered columns we can observe that,
when P-A effect is considered in the design the g value (equal to about 5.5 for
the HEA sections and to about 7 for the IPE sections) is not significantly
affected by the axial load. Neglecting the geometric effect in the design gives
rise to much lower acceptable design factors which, in addition, vary almost
linearly as a funcion of the axial load value.

From fig. 2, finally, it can be noted how the behavior of bracing systems is
strongly affected by the section shape. As concerns the braces slenderness it
seems to play a more significant role in the case of back-to-back channels (g=7.2
for X=50 and qg=4.8 for A=125) than in the case of angles (g=3.2 for A=50 and
g=2.4 for A=125). This can be explained by observing that in the latter case the
inelastic behavior is much more affected by damage due to local buckling and
fracture, which tend to overshadow the effect of global buckling of the
compressed bar.

CONCLUSIONS

The procedure described need to be applied to a much larger number of cases
in order to state reliable conclusions about the behavior of the structures at
study. The few results here shown, however, suggest the following considerations.
- Geometric effects strongly affect the behavior of framed structures. If these

effects are properly accounted for in the design, however, it seems possible to
state g factors values which are independent of vertical loads.

-~ Width to thickness ratios have a significant influence on the behavior of steel
bent members. The results shown here, in fact, point out the better performance
of IPE sections (b/t = 14) with respect to HEA sections (b/t = 20).

~ The slenderness and section shape of the diagonal bars appear to be critical
aspects for the behavior of single-storey concentric bracing systems .
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Figure 1. Determination of the behavior factor for cantilevered columns.
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Figure 2. Determination of the behavior factor for bracing systems.

V-1172





