Proceedings of Ninth World Conference on Earthquake Engineering
August 2-9, 1988, Tokyo-Kyoto, JAPAN (Vol.V)

8-3-4

A STOCHASTIC PROCEDURE FOR NONLINEAR
RESPONSE SPECTRA

Ming-Hsing PENG, Fawzi ELGHADAMS]I, and Bijan MOHRAZ

Civil and Mechanical Engineering Department, Southern Methodist University,
Dallas, Texas 75275-0335, USA

SUMMARY

This paper provides a stochastic procedure for seismic analysis of inelastic single-degree-of-
freedom systems. The formulation uses the power spectral density of recorded accelerograms and
the extreme value theory to obtain the distribution of the maximum inelastic response. The paper
presents de-amplification factors for reducing the elastic force for a given ductility and investigates
the influences of soil and structural parameters on the de-amplification. The study indicates that only
the strong motion duration has a pronounced effect on the de-amplification and that the effects of the
soil condition and damping on inelastic response stems primarily from their effects on the elastic
response.

INTRODUCTION

The evaluation of inelastic response and the determination of structural ductilities represent an
important task in seismic analysis and design. Because of the random nature of earthquakes,
stochastic procedures are often recommended for obtaining the necessary information for design and
for assessing structural safety. Several studies have considered the random vibration theory to
predict the response of nonlinear systems. Penzien and Liu (Ref. 1) used fifty artificial
accelerograms to obtain a probability distribution for extreme response of elastic-plastic and stiffness
degrading structures. Vanmarcke (Ref. 2) used the power spectral density and an equivalent strong
motion duration to develop analytical expressions for probability distribution of the response to
random excitations. In a later study, Grossmeyer (Ref. 3) presented an approximate statistical
procedure for predicting the response of elastic-plastic systems in terms of a stationary oscillatory
motion and a nonstationary inelastic displacement.

This paper utilizes some of the findings in the above studies to formulate a stochastic procedure
for obtaining de-amplification factors used in constructing inelastic response spectra. The procedure
uses power spectral densities of recorded accelerograms and considers the influence of soil condition
and strong motion duration on the inelastic response.

FORMULATION

Figure 1 shows a typical elastic-plastic force-displacement relationship. In the figure Cj is the
initial point of origin and Cj, Cj, ... are the points of origin in subsequent hysteresis loops. The
displacement between two successive points of origin is referred to as the single drift d;. The drift
e(?) can be expressed as the algebraic sum of the preceding single drifts as

e = 34; )
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Fig. 1 Single drift and drift in an elastic-plastic system.

The response y(2) of an elastic-plastic SDOF system consists of two components - the elastic
response y,, (z) and the inelastic response or drift e (). Thus,

yO =y 0+e® @

The maximum response y,,,, can be obtained as

Ymax = Yo+ €max (3)

where y,is the yield deformation and e,,4, is the peak or maximum drift. Figure 2 shows typical
results for y (2), y. (2), d;, and e (¢) for a SDOF system with 2 percent damping subjected to the SOOE
component of El Centro, the Imperial Valley Earthquake of May 18, 1940. The root mean square
(rms) response to this component was used as the yield deformation of the system. The only
nondeterministic component of Y, in Eq. (3) is the peak drift ;4. Consequently, the distribution
of the maximum inelastic response can be formulated once the distribution of peak drift is known.

Kamopp and Scharton (Ref. 4) proposed an equation for estimating the average inelastic
deformation D for a single yield level crossing as

s “

D =
2y,

where o, is the rms response of a SDOF system. In an earlier study of a large number of
accelerograms by the authors (Ref. 5), it was concluded that the average inelastic deformation D can

be assumed approximately equal to the standard deviation of the single drift o,. If the drift is a zero
mean process and assuming that the single drifts are independent, the standard deviation of the drift

0, can be computed from

0, ={no, =InD (%)
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Fig. 2  Response time history (in cm) computed from SOOE Component of El Centro, 1940 for
damping of 2 percent and a frequency of 5.0 cps.

where
n = uyo td (6)

is the number of single drifts or yield level crossings within a specified duration 7z and uy is the
yield level crossing rate. Assuming the drift is Gaussian, the extreme value theory (Ref. 6) may be
used to obtain the distribution of the peak drift in a double exponential form. Since the assumption of
zero mean process for drift is not strictly accurate, the expression for the mean was modified using
the data from a large number of recorded accelerograms. The modification includes an additional
term o, in the expression. Therefore, the mean and standard deviation of e,,,,, are

L, =0, ({2Inn + Y 1) )
max J2Inn
= _%
Oemax = 6 J2Inn ®

where y=0.5772 is the Euler number. The peak drift e,,,,, for a given probability can be computed
from Egs. (7) and (8) and used in the following expression to obtain the ductility factor

= Cmax 9
,u—1+yo ©
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For a given ductility p, the de-amplification factor y, is defined as the ratio of the inelastic yield
spectrum Y, to the elastic spectrum S, (Ref. 7). Thus,

= Y/8, (10)

Expressing the yield deformation in terms of the rms response and a yield factor y, = k,,0y, Eq. (10)
can be written as

W= Kulkyo (1)

where £, is the yield factor corresponding to a specified ductility 4 and k, _ ; is the yield factor
corresponding to the elastic case referred to as the peak factor in Ref. 2. An iterative procedure is

used to obtain the yield factor k, and to compute the de-amplification factor y, in Eq. (11) fora
given ductility .

RESULTS

Figure 3 shows comparisons of the de-amplification factors from this study with those reported
by others (Refs. 7, 8, 9, 10). A strong motion duration of 10 sec which is the average for the
ensemble of horizontal components of accelerograms recorded on alluvium was used in the study to
obtain the de-amplifications in Fig. 3. The influence of the strong motion duration on the de-
amplification is shown in Fig. 4 which indicates that for a given ductility a longer duration of strong
motion results in a greater de-amplification or a smaller reduction in the elastic force. Results similar
to those in Fig. 4 for the influence of damping, soil condition, and probability level indicate that these
parameters do not affect the de-amplification to a significant degree.

Using the procedure described herein, the force per unit mass normalized to peak ground
acceleration for ductilities of 2 and 5 for alluvium were computed and are shown in Fig. 5. The
figure shows that as the period increases larger ductilities do not significantly influence the reduction
in the elastic force. Figure 6 shows the spectral displacement for 1.0 g peak ground acceleration for
the plots in Fig. 5. The figure indicates that with increased ductility, one may expect large inelastic
deformation which may prohibit a full reduction in the elastic force.
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Fig. 3  Comparison of mean-plus-one standard deviation de-amplification factors for alluvium
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Fig.4 Effect of strong motion duration on the mean-plus-one standard deviation
de-amplification factor - - 2 percent damping.
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Fig. 5 Reduction in the elastic force with ductility for alluvium - - 2 percent damping.

CONCLUSIONS

The study concludes that unlike the strong motion duration, the effects of the probability level,
damping, and soil condition on the inelastic response stem primarily from their effects on the elastic
response and not from their effects on the de-amplification factors. The study also indicates that a
smaller reduction in the elastic force is to be expected for a longer duration of strong motion
especially for small ductilities. The procedure discussed herein provides statistical means for
incorporating the duration of strong motion in estimating the level at which the elastic response may
be de-amplified for a given ductility.
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Fig. 6 Spectral displacement associated with Figure 5 for 1 g peak ground acceleration.
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