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SUMMARY

A new theory is presented of direct design for finding the structural mass
distribution of an elastic straight beam such that the mean maximum response
curvature distribution to spectrum-compatible design moderate earthquakes is
equal to a prescribed distribution. The essential semi—analytical procedure
involving the analytical solution to an inverse differential equation is
illustrated for a cantilever or a chimney. It is demonstrated through time
history analysis that all the three chimneys designed by the proposed method
exhibit not only specified uniform distributions of mean maximum response
curvature but also fairly uniform distributions of mean maximum inelastic
response curvature under design magjor earthquakes.

1. INTRODUCTION

An efficient method of earthquake-response constrained design has been
presented by Nakamura and Yamane (Ref.1) for shear building models. It is a
direct method in the sense that the stiffnesses of a shear building are found
directly on the basis of the design formulas for specified fundamental natural
frequency and lowest eigenvector. No such direct procedure appears to have been
presented for distributed-mass structures so far.

The purpose of this paper is to present an efficient, direct and semi-
analytical method of design of a one-dimensional distributed-mass structure for
a specified or constrained mean maximum response distribution to design moderate
earthquakes compatible with a prescribed design spectrum. It is an inverse
method (Ref.2) in the sense that the conventional procedure of successive
improvement of assumed designs toward a desirable one is essentially reversed.
The essential idea and procedure are described for a cantilever as a model, but
can be extended to a variety of distributed-mass structures.

2. PROBLEM OF RESPONSE-CURVATURE CONSTRAINED DESIGN OF A BEAM

Consider a straight beam of length [ with structural mass distribution
mg(E) and with non-structural mass distribution my(E), both per unit length of
its axial coordinate x=fL. For the sake of simplicity, it is assumed that the
beam has a uniform radius of gyration » and is made of an elastic material with
Young's modulus F and density p. The bending stiffness is then given by
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EI(E) = (Erz/p)msfi) (1)

It is further assumed that the effects of shear deformation and rotatory inertia
on the equation of motion are negligibly small.

The problem of design of the beam for constrained earthquake-response
curvature may be stated as follows:

PROBLEM CKSN  Given E, L, p, r and my, (&) for a straight beam with specified
supports, find
2 2
m (£) 2 Mo where m., 2 0 (2)
such that the mean maximum response curvature is

]

K(E) = k(&) where m (£) > me (3a)

K(E) £ k(&) where m, (E) = M (3b)

IA

under the design moderate earthquakes compatible with a prescribed design
spectrum.

In this statement, k(&) and Mgy denote a prescribed curvature distribution and a
prescribed minimum mass, respectively.

3. APPROXIMATE ANALYTICAL SOLUTION IN TERMS OF THE LOWEST EIGENFUNCTION

In many practical design problems of beams for constrained earthquake-
response curvature, a good approximate estimate of the mean maximum earthquake-
response curvature can be made by means of the response spectrum technique where
only the lowest eigenfunction is taken into consideration. Let ¢7(&) and wz
denote the lowest eigenfunction and the corresponding fundamental natural
frequency of the beam satisfying the design conditions (2) and (3). The
approximate estimate of the mean maximum response curvature g7 (g) to prescribed
design moderate earthquakes may be written as

= n 2
K (E) = 9,(0,)8,6."(8) /L )

where S4(Q7) and B; denote the design displacement response spectrum
corresponding to 97=w72 and the modal participation factor of the lowest mode,
respectively and where a prime denotes differentiation with respect to £. The
original problem CKSN may therefore be regarded as that for specified lowest
eigenfunction ¢7 ().

The analytical solution procedure for the approximate design problem in
terms of ¢7(f) may be illustrated best by an example. Consider a cantilever
shown in Fig.1 to be designed first for the case mgp=0 and for Kl(g):Ej
(constant). Then the lowest eigenfunction is given by

9, (8) = cE? (¢: constant) (5)
due to the geometrical boundary condition at &=0. For the sake of simplicity
again, the beam is to carry a uniform non-structural mass my per unit length of
the axis.

The equation of free transverse vibration in the lowest mode may be reduced
to the following form:

m(8) = AE'm (8) = AEm (6)
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where k:wlsz”/(2r2E) denotes the reduced lowest eigenvalue. While the
homogeneous Eq. (6) could be reduced to a Bessel equation by some appropriate
transformation of variables, a series solution is adopted here. If the series

[oe]
_ n
mS(E) = 3 a,t 7
n=0
is substituted into Eq.(6), all the coefficients {a,} can be determined in terms
of ap, a7 and X as follows:

- - - A _ A
Ug =Gz = Qg =041 =0, ay=77(apm, a;=7250a
o, =—A g Q, =g
am T dn(dn-1) “an-4 ° n+l ~ (dn+l) dn “4n-3
(n=2,3,4, +++) (8)

The constants of integration gp and g; are determined by the boundary conditioms
at the tip, i.e.

M(1) =E1Er2ms(z)/p =0 > m (1) =0 (9)

Q1) =ElEr2ms'(1)/(pL) =0 > m (1) =0 (10)

Substitution of Eqs.(7) and (8) into Eqs.(9) and (10) provides a set of
simultaneous linear equations for g, and a;. The constants gy and g7 are then
given in terms of A. The value of )\ is determined from (4) with kj(&)=K7.

The foregoing procedure may readily be extended to beams with different
boundary conditions and to be designed for a variety of different prescribed
curvature distributions. While the differential equation (6) does not have any
singular point due to the condition of uniform curvature, there are a variety of
design problems such that the differential equations for mg(g) have singular
points. For instance, if the prescribed curvature at the tip of the cantilever
(1) vanishes, then the boundary condition mg(7)=0 would not be available. 1In
such a case, the general solution of the differential equation for mg(§) will
have singular terms corresponding to the degree of singularity at the boundary.
The condition of finite distribution of mg (&) in the closed interval can then be
utilized for finding the solution mg(). The details of such a singular
solution will be published elsewhere.

4. APPROXIMATE ANALYTICAL SOLUTION FOR A BEAM WITH A MINIMUM MASS REQUIREMENT

Consider PROBLEM CKSN for mg,>0. Then the two regions of the beam are
governed by two different equations. The region such that mg (&) =mg, is
governed by the conventional equation of free vibration in terms of ¢7(g). The
region such that mg(&)>mgy is governed by a differential equation in terms of
mg (%) derived from the prescribed curvature distribution. The two solutions
must be connected at the unknown boundary between the two regions.

Let L, and L4 denote the lengths of such two regions for the case of the
cantilever shown in Fig.1. The lowest eigenfunction for (<£;<1 is of the
well known form for a uniform beam and contains four integration constants. The
solution mg(E) for 0Er<1 is given by Eq.(7) with the coefficients
determined as Eq.(8) and contains two integration constants as described in
Section 3. The fundamental natural frequency w7 and the length L4 are also
unknowns. These 8 unknowns can be determined by the two boundary conditions at
the tip, four continuity condition on the eigenfunction at g;=1, a
continuity condition on the mass distribution at £r=7, and the specified
uniform curvature condition for 02gr<l. An example of the mass distribution
calculated by this procedure is shown also in Fig.1.
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5. FINITE ELEMENT SOLUTION IN WHICH THE EFFECT OF SEVERAL
HIGHER-ORDER EIGENFUNCTIONS IS TAKEN INTO ACCOUNT

Since the lowest mode component plays the dominant role in the estimate of
the mean maximum earthquake-response curvature, the solution obtained by the
procedure as described in Section 4 is a good approximate design. A numerical
solution to PROBLEM CKSN may be found by simple successive improvement of the
correspondin§ approximate solution as obtained by the procedure in Section 4.

Let ms( )(E) denote the approximate solution to PROBLEM CKSN for the
cantilever as obtained in Section 4. A finite element model can readily be
defined for the cantilever with ms(z)(g). The higher order eigenvalues and
eigenfunctions can be found by a conventional eigenvalue analysis procedure for
this model. The mean maximum response curvature distribution k 1)(5) as
estimated by means of SRSS technique in terms of several lowest eigenfunctions
slightly deviates from the specified uniform curvature value Ej in 0SEr<7. The
former may thereforﬁ)be modified through the following two steps.

STEP 1a Modify mg (%’ (&) as follows:

n,# 0 =n e @k (11)

STEP 1b Compute K(2)(g) for the cantilever with ms(Z)(g). If ]ng)(g)4ElgAK (a

small Brescribed value), then stop. _

STEP 2a If [K( )(E)-K|>AK for some range of £, then compute @%ﬁé:wax[K(z)(E)—K]
2b Solve PROBLEM CKSN for the target curvature value

78 = @ Z/Kniji (12)

to find the third modified mass distribution m3(3)(g).
Here STEP 1 is primarily for uniform distribution of k(Z) and STEP 2 is
necessary for adjusting the level of k(Z). It has been tacitly assumed in STEP
2 that the ratio of the SRSS estimate of k(f) in Section 5 to that of «(&) in
Section 4 will not be radically varied with respect to the level of k(g). These
two steps may be repeated as many times as are necessary for achieving
prescribed accuracy.

6. ILLUSTRATIVE DESIGN OF A CIRCULAR CYLINDRICAL REINFORCED CONCRETE CHIMNEY
AND ITS INELASTIC RESPONSE TO DESIGN MAJOR EARTHQUAKES

As an example, a circular cylindrical reinforced concrete chimney with
geometrical configuration shown in Fig.2 has been designed so as to attain a
prescribed uniform mean maximum stress distribution 0 under design moderate
earthquakes (referred to as LEVEL 1 earthquake) compatible with the prescribed
design spectrum defined by (T(sec), Sy(an/s))=(0.02, 0.640), (0.03, 0.960),
(0.125, 10.96), (0.579, 50.75), (3.78, 50.75), (5.00, 38.41) (Ref.4). The
chimney is represented by a thin circular cylindrical shell model into whose
middle surface all the structural mass over the thickness is concentrated. The
mean maximum response stress is estimated at the extreme fibre of the middle
surface. The lowest-mode damping ratio has been assumed to be 0.02. The
damping ratio in a higher mode has been assumed to be proportional to the higher
frequency. Three designs for the following three design conditions have been
obtained:

Design  E(kgf/em?) G (kgf/em?) m,, (kg/m) K (rad/cm) o
CL-D2-540 1.5%x108 40 3,640 3.23x10°°® 0.23
CL-D2-550 2.0x105 50 3,640 2. 49x1078 0.23
CL-D2-560 2.0x10°% 60 5,000 2. 42x107° 0.23
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where Eé denotes the curvature corresponding to crack strain in the extreme
fibre and ¢ is the ratio of the second stiffness to initial stiffness in the
moment-curvature relation. The structural mass distributions obtained by the
procedure as described in Section 5 are shown in Fig.3. STEP 1 has been applied
only once without STEP 2 in these examples and good accuracy has been achieved.

In order to demonstrate that the so-designed chimneys indeed exhibit the
prescribed ¢ distributions under spectrum-compatible artificial earthquakes,
time history analysis with DRAIN-2D (Ref.5) has been conducted under ten
artificial earthquakes generated by SIMQKE (Ref.6) with the target spectrum as
defined by the afore-mentioned six control points for the design spectrum. A
modified TAKEDA model in DRAIN-2D has been adopted as the hysteretic moment-
rotation relation for a reinforced concrete beam element. Fig.4 shows the
distributions of the mean maximum response curvature of the time history
analysis. It is apparent from Fig.4 that all the three curvature distributions
are indeed uniform for the region mg(%)2mg, and in good agreement with the
prescribed values corresponding to the G values. Fig.5 shows the plots of the
mean maximum values of bending moment and curvature of each element of the
models on the bilinear skeleton diagram.

In order to investigate the inelastic response characteristics of the three
models to design major earthquakes, time history analysis has been conducted
under ten artificial earthquakes compatible with the target spectrum whose level
is just twice as large as the one for moderate (LEVEL 1) earthquakes. The
results have been plotted also in Fig.4 and Fig.5 and labelled as LEVEL 2. It is
also apparent that the response curvature distributions are remarkably uniform
in spite of inelastic deformation of all the elements in the regioms mg () 2mgy,.

7. CONCLUSIONS

A new theory has been presented of direct design for finding the structural
mass distribution of an elastic straight beam such that the mean maximum
response curvature distribution to design moderate earthquakes is equal to a
prescribed distribution. It can be concluded from the result of time history
analysis that the proposed method indeed provides the desired design with a
reasonable accuracy. It can be expected from the result of inelastic response
analysis to design major earthquakes that if a beam or a chimney is designed so
as to exhibit a uniform distribution of mean maximum response curvature under
design moderate earthquakes, the distribution of mean maximum inelastic response
curvature under design major earthquakes will also be fairly uniform.

The idea developed in this paper can be extended to a variety of one-
dimensional or two-dimensional distributed-mass systems (Ref.3).
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