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SUMMARY

This paper describes the effect of deformation of beam—to—column
connections on hysteretic behavior of steel rigid frames with tubular columns.
In analyses of rigid frames beam—to—column connections are usually assumed to be
infinitely rigid. However, connections do not behave rigidly in steel frames
with tubular columns under the influence of severe earthquakes. In this paper,
contributions of beam—to—column connections to flexibility of frames in a post-
elastic region are evaluated. The paper concludes with a discussion on the
modeling of flexibility of beam—to—column connections.

INTRODUCTION

In recent years, many authors have presented useful results regarding the
effect of deformation of connections on behavior of steel frames under cyclic
loading([1,2]. These studies have dealt with moment-resisting frames with wide-
flange columns, paying attention only to shear deformation in the joint panels.
However, in moment-resisting frames with tubular columns, not only shear
deformation in the joint panels, but also local deformation of beam—to—column
connections plays an important role in determining the hysteretic behavior of
frames. The local deformation of a beam~to—column connection as shown in Fig.1
means out—of—plane deformation of column walls where the beam flanges are
welded.

The general practice in analyzing steel structures is to assume that
connections behave either as perfectly pinned or completely fixed elements. This
approach may result in unconservative predictions of drifts of framel3]. It is
possible to incorporate effects of connection flexibility in an analysis by
taking into account moment—-rotation characteristics of connections, that are
obtained from experimental results[4]. In this paper extensional slope-
deflection equations are proposed for analyzing semi-rigid frames. Using these
equations, numerical studies were performed to obtain relationships between
total energy absorbed in steel frames and story drifts for differently
proportioned frames. :

DEFORMATIONS IN STEEL SEMI-RIGID FRAME

A beam-to-column subassemblage in steel semi-rigid frames under lateral
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force deforms as shown in Fig.2(a) and (b). Four components of deformation in
the subassemblage shown in Fig.2(c), (d), (e) and (f) is used to explain behavior
of frames in this paper.

Both bending and shearing deformations of beams and columns are commonly
used in conventional analysis of frames. Shearing and local deformations of
connections are selected to describe the connection deformation. The shearing
deformation of connection is the transformation of shape of the joint panel,
while the local deformation of connection is out—of-plane deformation in the
column walls caused by forces from the beam flanges. The local deformation of
connections should be dealt with independently of the shearing deformation of
connections, because the shearing deformation in the connection causes rotations
at the ends of both beams and columns.

Referring to Fig.3, shearing deformation of the joint panels is expressed

by Eq. (1D.
. 2
P Ga,

Tp = (¢D)
where, #p is the shape factor of the joint panel. Ap is the cross—-sectional area
of the joint panel.

On the other hand, local deformation is given by Eq. (2).
_ M
a =4 (¢))
(A
where, %; is the stiffness of the local deformation. This is obtained from test
results[4].

EXTENSIONAL SLOPE-DEFLECTION EQUATIONS

To incorporate the effect of connection flexibility in the slope-deflection
equations, it is common practice to model connections as springs with shear-
distortion and moment-rotation relationships described as Egs. (1) and (2). In
Fig. 4, the extensional slope—deflection equations for beam and column are
expressed by Egs. (3) and (4) respectively.
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In the above equations, E is Young’s modulus, Kb and Kc are the stiffness of
beams and columns, and Ay and A, are the cross section of beams and columns
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respectively.

Egqs. (3) and (4) assume the following:
(1> The axial deformation of the beam is neglected.
(2) The local deformation is independent from the shear deformation.

CONTRIBUTION OF CONNECTION DEFORMATION

For the purpose of finding the contribution of beam—to—column connections
to the energy absorbed by frames in the post-elastic range, three steel semi-
rigid frames with tubular columns were analyzed,Fig. 5. Table 1 shows the
dimensions of members of the frames.

The contribution of the connection deformation to the total energy absorbed
in frames was obtained from the results of analyses as shown in Fig. 6. Cpl,C s
and C, . denote the contribution of the local deformation of connections, and the
shearing deformation of joint panels and the shearing deformation of members
respectively.

FRAME TESTS

There were three types of 2-story,2-bay steel frames. The frames were
called Frame A,B and C. Each frame had the circumferential reinforcing ribs at
the beam—to—column connections as shown in Fig.7. All frames were subjected to
cyclic lateral loads at the height of the beams.The loading system is outlined
in Fig. 8.

A preliminary test was conducted using a cyclic load in the elastic region
for every frame. Then a load was applied cyclically as shown in Fig.9. Testing
was terminated when one of the members or joints failed

Monotonic curves[5] obtained from cyclic load-deflection curves are shcwn
in Fig.10. From these tests, it was found that the geometric parameters of
connections affected the elastic-plastic behavior of frames

In the case of Frame B where the stiffness was the smallest for the types
of frames used, the story drifts were calculated using the above equations.
Fig. 11 shows the contribution of the components in the frame drifts to the total
frame drifts.

CONCLUSIONS

The following conclusions may be drawn from this study.
1. It is possible to incorporate the effect of connection flexibility in the
analysis by including the moment-rotation characteristics of the connection,
obtained from experimental results.
2. The contribution of the connection deformation to the total energy absorbed by
the frames varies with the volume of the joint panels.
3.Closer agreement between test data and analyzed results was obtained when
shearing deformations and local deformations of beam—to-column connections were
included in the analysis.
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Table 1 Dimensions of beams and columns
Type of |H X B x ty x tf A Yield Kappab
Beam Strength2
(mm) (CIZ) (tonf/cm™)
Bl 400 200 8 13 81.4 2. 4 2.81
B2 496 199 9 14 101. 3 2.4 2. 41
Type of | D x D x t D/t A Yield Kappac
Column 9 Strength
(mm) (cm®) [(tonf/cm
C1 250 250 12 20.8 |114.2 2. 4 2.03
C2 350 350 12 29.2 |162.2 2.4 2.03
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