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SUMMARY

Parametric solutions for the transfer functions between the
free field ground motion and the various response quantities of the
soil structure interaction model will be presented. The so0il struc-
ture interaction model utilized has three degrees of freedom and the
both kinetic and the kinematic interaction are considered. Cases
where the soil structure effect can be important are identified
through the use of the parametric transfer fuctions.

FORMULATION OF THE MODEL

The soil-structure interaction model will be formulated on the
basis of the sub-structure method (Refs.1 and 2). Treating the soil
structure system as two sub-structures connected through the degrees
of freedom associated with the interface (Fig.1.) and enforcing the
compatibility of the forces and the displacements, the equatios of
motion can be written as:

0 0 T's

Q2[M_]1+iQ[C]+ [Ke —1 = -[P=] {F2
1+ 5 [Se1 = 1 {T#} (1)

where: {T'z}: Fourier transform of relative displacements at the

degrees of freedom associated with the structure only

{fe}: Fourier transform of relative displacements at the
degrees of freedom associated with the interface only

[Se¢]: Impedance matrix

[Pc]l: Coefficient matrix

[Ec],fccl,[Kclz Mass, damping and stiffness matrices

{¥%}: Fourier transform of the free-field ground accelera-
tions at the interface degrees of freedom.

Solution of Eq.1 requires the analysis of the soil substructure
to obtain the free-field ground motions at the interface degrees of
freedom (kinematic interaction) and the determination of the impe-
dance matrix (kinetic interaction). Assuming planar rigid-body
motion at the interface:
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{29} = {X%, 9%, %37 = (32, y2, &)+ (2)

Where %2, Y& and 32 are the free-field displacements at the
interface along the x, y and & directions as indicated in Fig.1.
Assuming that the vertical response can be decoupled from the

equations of motion:
(f7) = (X3, 3237 = (%2, &y~ (3)

Modeling the super-structure with lumped masses associated with
lateral degrees of freedom the structural matrices of Eq.1 will have
the following form:

[(Ma] | [Ma1{I} [Ma]{h}
[Mcl={{I¥7 [Ma] {I}7 (M2l [I]+ms {I}T[Ma1{h} (4)
{h}T[Ma] {I}7[M=]{h} {h}T[Mal{h}+Ie
[Ca]l | O 0 [Kel | © 0
[Cel= 0 I 4] 0 [Re] 0 0 0] (5)
0 0 0 0 6] ]
[Ma]{I} [Mz]{h}
[Pel= [{I}T[Mal[Il+ms | {I}T[Mz]{h} (6)
{I}T[Ma]{h} {h}T[Mal{h}+Ie

Where: [Mx],[Cs] and [Ks]l: Conventional mass, damping and
stiffness matrices of the associated fixed base structure.

{I}: Unit vector

{h}: Vector of vertical distances of of the structural
degrees of freedom from the interface

I : Mass of the base of the structure

Je: Sum of the mass moment of inertia about rocking axis at
the structural degrees of freedom and of the base mass.

The displacement vector is:

{({T=} {3} = {{U}]{%} {3u)} (7)

Where: {u} is the vector of relative displacements at the structural

degrees of freedom and X» and %. are respectively the relative
displacement and the rocking at the base.

Assuming stiffness proportional damping Eq.1 becomes:

0 0 Tw
—QF[M_]+(1-2iY(R/Q1) ) [K]+ — 1 = -[P_1{F&} (8)
Q

A

{Sf] I'e>

Foundation Impedance Matrix An impedance matrix of the following
form will be assumed:

A

A =[Se] A (9) [Se]l= (10)
My By, Kase |

Where: Fe, My, Xs and . are respectively the amplitudes of
the harmonic force and moment and the corresponding lateral trans-

lation and rocking at the base. The complex stiffness functions
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K45 have been provided by several authors (e.g. Refs. 2, 3, 4 and 5)
as functions of shear modulus (G), depth of embedment (E), depth to
bedrock (H), Poisson's ratio (a), foundation radius (R) and the fre-
quency of excitation ().

It can be shown that the coupled stiffness functions Kae. and Koem
can be made equal to zero by changing the point of application of
the impedance elements at the base and that the complex stiffness
functions can be decomposed into its real (spring) and imaginary
(dashpot) parts (Kis= k43 + icss) yielding the uncoupled stiff-

ness, K<, ke and the damping, C., ca coefficients (Fig. 3)
as follows:

Koe=Ksere ; ke=Kem-K...z2 H Cx=Cox ; CB=Cam-CirxzZ (11)

Where z=k.m/kK,.. is approximately equal to E/3.

Kinematic Interaction. The transfer function betueen the lateral
displacement and the rocking angle at the embedment depth of a rigid
massless cylindirical foundation and those of at the free field
(control motion) is approximately given by (Ref.2)}:

ol im cos (RE/Va) for (QE/Vae) < 1
(22l /x| = (12)
0.453 for (QE/Vs) 2 1
ot 1 0.257 [1- cos(SE/V.)] for (QE/Va) ¢ 1
|8zl /182 = (13)
0.257 for (QE/Va) 3 1

Structural Considerations. Since the main contributors to the soil
structure interaction phenomena: the overturning moment and the base
shear, are controlled by the first mode behavior of the structure,
it will be sufficient to model the super structure in its equivalent
first mode parameters (Ref.5) as shown in Fig.3. The structural mat-
rices in Egs. 4, 5 and 6 will then be:

m m m(h+E)
[Mc]= i M+me m(h+E) (14)
M (h+E) B (h+E) A(h+E) 24T,
k 0 0 m R (h+E)
[Rel= |0 0 ) [Pel= |@+me m(h+E) (15,16)
0 0 0 m(h+E) @(R+E)2+1¢

Where, m is the generalized first mode mass and h is the height of
this mass above the base. The displacement vector in Egn.1 will be:

{ Tulfe 37 = { Q2| %o B0 37 (17)

Where, G;: Generalized first mode relative displacement.
Rw: Relative displacement of the base with respect to the
~ free field.

$,.: Relative rocking angle of the base with respect to the
free field.

Through re-arranging and normalizing the equation of motion of the
system in the frequency domain can be given by:
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F1+(Q2/R2)2+2iv1 (Qa/9Q) ] [-1] [-A=] G,

[-11 [-1-(me/m) + (Kot iQCx) / (MRZ) ] [-he] Xy =
{-hel [-h] [-Re®-Ie/fi+ (Km+iQm) / (R=) ]| | &s
1 he xS
1+Me /R Ao N (18)
he he?+Ie/m|

Where ho=E+h and Q: and Y. are respectively the first mode fre-
quency and the damping ratio of the associated fixed base structure.

PARAMETRIC SOLUTIONS

The following non-dimensional parameters are utilized for the
parametric solutions:

Non-dimensional Frequency : Ao

Non-dimensional First Mode Frequency : Ai=Q,:R/Va

Mass Ratio : me/m

Height Ratio : h</R

Embedment Ratio : E/R

Structural Damping Ratio : vya

Soil Damping Ratio: B

Poisson's Ratio : a (of the soil media)

Density Ratio : o¢/8
o is the gross density of the structure (total mass
divided by the gross volume) and & is the density of
the soil media. (Assumed to be equal to 0.15, Ref.5)

It has been shown (Ref. 6) that the equations of motion given by
EqQ.18 can be expressed in terms of these parameters.

In Figs. 4,5 and 6 the transfer functions between: the relative
displacement at the generalized first mode with respect to the base
and the free field displacement (ui./xg), the relative lateral
displacement at the base with respect to the free field displacement
and the free field displacement (Xn/xe) and the rocking rotation
at the base and the free field displacement (R®n/Xa) are plotted
against Ao for the following range of values of the parameters
encompassing most of the regular 6 to 12 storey building structures:

Height Ratio : ho/R = 2.

Structural Damping Ratio : yai= 0.05
Soil Damping Ratio: B = 0.05
Poisson's Ratio : a 0.45

Density Ratio : o/8 0.15

o

Non-dimensional First Mode Frequency : A= 0.1 - 2.
Mass Ratio : mu/m = 0.1 - 5.
Embedment Ratio : E/R = 0.2 - 2.
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Figure 6.
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Plotted Against the Normalized
Frequency ,A., for Different
Values of A,, E/R .and mn/m.
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