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SUMMARY

The objective of this study is to develop a theory for the dynamic response
of a group of rigid structures with arbitrarily shaped bases attached to the
surface of an elastic half space under the effects of the seismic excitation.
One of the two methods developed in this paper is the application of a
computationally efficient boundary element method (BEM). The other is a
simplified method and is for obtaining a first order approximation. Numerical
results for two cylindrical masses are presented when they are excited by
vertically incident plane waves, and the effects of through-the-soil coupling
are evaluated.

INTRODUCTION

The objective of this study is to develop a theory for the dynamic response
of a group of rigid structures (Ref.1) with arbitrarily shaped bases attached to
the surface of an elastic half space under the effects of the seismic
excitation.

Two methods are developed for the calculation of the dynamic response of a
number M of rigid structures. One is the application of a computationally
efficient boundary element method (BEM). The other is a much simpler method than
the first one, and it is for obtaining a first order approximation, For this
method only the response of a single structure and the Green's functions for the
elastic half-space are needed.

Following the proposed two methods described above, numerical results for
two cylindrical masses (Fig.1) are presented when they are excited by vertically
incident plane waves, and the three-dimensional through-the-soil coupling
effects are evaluated. The variation of such effects is then shown as functions
of the frequency of the incident wave and the separation distance between the
foundations.

METHODS OF ANALYSIS
B 1 meth This method is the application of 'a computationally
efficient boundary element method (BEM). This procedure is based upon

subdividing the contact area into a number N of smaller triangular subregions,
and the contact tractions and the Green's functions are assumed to be linearly
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varying functions of space coordinate within each subregion. The mixed boundary
value problem is then discretized and solved numerically.

Comparing with the previous methods (Refs.2-4), mainly improved points are
as follows:

(1) In order to enable the integrand of the derived equation to be
integrated analytically, each of the real and imaginary parts of the Green's
function is approximated by a polynomial or a linear function.

(2) The base is subdivided into a number of triangular subregions of
various size and shape. The size of the edge subregion is reduced in order to
estimate accurately the stress concentration near the fringe of the base (see
Fig.2).

(3) The contact stress is assumed to vary linearly within each subregion.

(4) The displacement point, whose location was restricted to the center of
the subregion in the previous studies, is placed also on the edge of the
subregion and along the edge of the base. This makes it possible to estimate
accurately the stress concentration near the fringe of the base.

It is quite impossible in the limited space to give details of derivations,
therefore, only the final formula is shown as follows. References 5-7 should be
consulted for additional details and examples.

2
(U} = ([11- —]‘*J’—R[cum)"[smg} 1

in which {U} is the 6M displacement vector for the foundations; {U&} is the 3M
foundation input motion vector; [I] is the 6Mx6M identity matrix; [C] is the
6Mx6M compliance matrix for the rigid foundations; [S] is the 6Mx3M input motion
matrix; [M] is the 6Mx6M mass matrix; w is the circular frequency of the plane
wave excitation; R is a standard length such as the radius of the circular base;
and M 1is the rigidity modulus of the medium.

Simplified method Let us consider the case in which the free-field motion of
the ground surface is represented by exp(iw t). It is assumed that the response
of a single foundation is given by Qexp{i(w t- ¢ )} in which Q is the relative
amplification factor, ¢ is the phase delay, and Qexp(-i¢ ) is the complex
frequency response function for the single foundation. The relative displacement
between foundation no.1 (see Fig.1) and the free surface is then given by

Qexp{i(wt-¢ )}-exp(iwt) (2)
This relative displacement generates a wave radiating from the foundation. If

the source can be approximated by a point, this wave can be approximated by that
propagating in an elastic half-space subjected to a concentrated pulse at the
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center of foundation no.1, and the ground motion at the center of foundation
no.2 can be given using the Green's functions as follows.

[Qexp{i(wt- ¢ )}-exp(iwt)]-qexp(-iY ) (3)
in which qexp(-iVy ) is the ratio of the complex value of the Green's function at
the center of the base of foundation no.2 to that at a representative point (
e.g., in the case of circular foundations, at half the radius) of the base of
foundation no.1. This Green's function is for the elastic half-space subjected
to a concentrated pulse applied at the center of foundation no.1. Therefore, the
ground motion at foundation no.2 is given by the sum of the ground motion for
the radiation wave given by Eq.(3) and the free-field motion of the ground
surface

[Qexp{i(w t-¢ )}-exp(iw t)]-qexp(-iy )+exp(iw t) (%)
The response of foundation no.2 to such a ground motion can be obtained
approximately by multiplying Eq.(4) by the complex frequency response function
for the single foundation, Qexp(-i¢ ).

Finally, the amplitude ratio of the motion of foundation no.2 to that of
the corresponding isolated foundation is given as

[[Qexp{i(w t- ¢)}-exp(iy t)]-qexp(-iy )+exp(iw t)|
= |[Qexp(~i ¢)=11-qexp(=i¥ )+1 |
=/§2(02+1)+2chos(¢ +y )—2q2Qcos¢ -2qcosy +1 (5)

If the value of Eq.(5) is larger than unity, the response of the foundation
increases because of the interaction effects between the adjacent foundations,
while if it is smaller than unity, the response decreases.

NUMERICAL RESULTS
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Two-foundation model The methods developed in the preceding section are
applied to the case in which two rigid circular foundations are placed parallel
to the x axis as shown in Fig.1. In order to avoid the additional complication
of the foundation response due to the effect of the coupling between the
horizontal and rocking response, and to investigate only the effects of the
adjacent foundations, numerical results will be presented only for the case
where the height of each structure is zero, i.e., H=0. Also, the radii of the
two foundations are each assumed to be equal to R. Thus, the effects not only of
the mass M of each foundation but also of the separation L between the two
foundations on the foundation response are studied.

The soil has been modeled as a semi-infinite elastic medium with a
Poisson's ratio of 1/3. Three types of incident plane waves, namely, SV, SH, and
P waves, are then considered, and the results for the waves incident vertically
from below are presented in this paper. These three cases are referred to as the
parallel, transverse, and vertical excitations, respectively (see Fig.1).

Response of a single foundation Before the effects of adjacent foundations are

studied, the response of the single foundation isolated from the other
foundations is analyzed. The base has been discretized as shown in Fig.2 by use
of triangular subregions. For such a discretization of the single foundation,
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Fig. 4 Frequency Response Functions for Two-Foundation Model
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compliance functions and contact stress were compared in Ref.5 with the results
by Luco and Westmann (Ref.8) and those by Bycroft (Ref.9), respectively, and a
sufficient accuracy has been obtained.

Fig.3 shows the amplitude of the foundation response normalized by the
amplitude of the incident wave as functions of the dimensionless frequency, ag=
wR/Vg (Vg is the shear wave velocity in the half-space), for the incident S
and P waves, and for different values of dimensionless mass, m=M/(PR3) (P is
the density of the soil), of the rigid foundation. It should be noticed that the
maximum amplitude is not an infinite but a finite value, even though no damping
of the medium is assumed. This is because of the radiation damping.

teracti etwee £ ati Numerical results for the case of two
rigid ecircular foundations (Fig.1) are presented when they are excited by
vertically incident plane waves of the three types described above. Each Dbase
is discretized into 40 subregions as shown in Fig.2. Fig.4 shows the amplitude
of the foundation response normalized by the amplitude of the incident wave as
functions of the dimensionless frequency ap for the parallel, transverse, and
vertical excitations, i.e., for the incident SV, SH and P waves. For five
combinations of mq and m,, which denote the dimensionless mass of the adjacent
foundations, and for three separations between the two foundations, & = L/R =
2.5, 3, 4, the results are shown in comparison with the case of the single
foundation.

The effects of the interaction between adjacent foundations on the
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amplitude of the response of the foundation depends in a complicated manner upon
the numerical values of the frequency of the excitation, the separation between
the two foundations, the mass of the foundations, and the type of the incident

wave.

The results obtained above in Fig. 4 are very complicated. Therefore, in
order to show only the effects of the interaction between the two foundations,
the ratio of the amplitude of the motion of each foundation to that of the
corresponding isolated foundation is plotted in Fig. 5 as functions of
dimensionless frequency for different values of the separation. A comparison of
the four sets of curves of Fig. 5 makes it evident that the effect varying the
mass of the rigid foundation under consideration, m,, is not so significant as
that of the adjacent foundation, m,, and that the agreement between the results
of the proposed two methods is reasonably good. Whether the amplitude of the
response of the foundation increases or decreases depends upon the exciting
frequency and the separation in a cyclic manner. And the peak of the variance
shifts to the lower frequency with increasing separation. Such a result can be
explained using a wave radiating from the foundation.

CONCLUSIONS

The effects of through-the-soil coupling for two adjacent foundations are
evaluated using the proposed two methods. The variation of such effects is shown
as functions of the frequency of the incident wave and the separation distance
between the foundations. The agreement between the results of the two methods is
reasonably good, and the accuracy of the simplified method is verified. Whether
the amplitude of the response of the foundation increases or decreases depends
upon the exciting frequency and the separation in a cyclic manner. And such a
result can be explained using a wave radiating from the foundation.
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