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SUMMARY

A simple model for evaluation of dynamic stiffness of an
embedded structure is developed. The present model can account
for an irregular shape and heterogeneity of a surface layer
rationally. Through the verification of the present model using
a rigorous solution in frequency domain, a good agreement was
obtained. And some interesting numerical results about the
effect of undulating bed rock are presented.

INTRODUCTION

Many analytical methods for prediction of dynamic stiffness
of an embedded structure are now available. It is, however, not
always easy and sometimes tedious to take all important factors,
which will affect dynamic characteristics of embedded structures,
simultaneously into account. Thus the assumption that the
surface layer supporting embedded structures is an infinitely
spread stratum overlying a rigid bed rock has been customarily
used by many researchers. It is however, often the case that an
embedded structure of this kind is constructed in an irregularly
laminated alluvial soil-deposit bounded by diluvial hilly
formations with irregular shape.

Tamura has recently developed a simple and efficient model
for analysis of seismic response of an alluvial ground with a

irregular shapel). In his model, the soft surface layer of
interest is divided into vertical columns with triangular or
rectangular cross-sections. Each shear column is then replaced
by an equivalent simple—~damped-oscillator. And they are linked
together by a net of finite elements. This method is powerful
especially in estimating lower modes of vibration of the whole
surface area. When dynamic characteristics of an embedded
structure are studied in frequency domain, the maximum frequency
to be discussed will go to the extent beyond the resonant
frequency of the simple-damped oscillators. However, a rigid
foundation rocking in lateral direction will act to constrain the
higher modes of vibration of surface layer surrounding this
foundation.
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This paper extends the model for evaluation of dynamic
response characteristics of surface layer to prediction of
dynamic stiffness of an embedded structure. The first half of
this paper is addressed to a description of this method, and in
the latter half, the adequacy and applicability of this model is
discussed through some numerical examples.

PROPOSED MODEL

A scheme of this model is illustrated in Fig. 1. As has
been mentioned above, an alluvial surface layer of interest is
divided into columns of soil (Fig. 1(a)), and each column is
replaced by a simple-damped oscillator. Then a net of finite
elements are used to link these oscillators together to be a
models of the alluvial surface layer (Fig. 1(b)). Young's
modulus E; at the node i of the finite-element net is determined
using the following equation:

E.= IHie (D%, (2)dz (1)
i- Yo % i

where, H. = depth of the soil column, and ey (z) denotes variation
of Young%s modulus with the depth. Poisson's ratio V; and mass
density p; are also determined in the same manner as shown in the
above equation. x(z) and the eigenvalue corresponding to this
X (z) should essentially be the fundamental mode and natural
frequency of shear vibration of this column, respectively.
However, it is sometimes effective in improving the result to
modify only the shape of x(z) partially seeing how the soil layer
vibrates at the position of interest. When a rigid foundation is
studied, the shape of ¥ (z) near the foundation will be forced
into straight line.

Young's modulus E; and Poisson's ratio V. of the element j
are determined by taﬁlng the average of th%se values at the
vertices of this element. Thus:

Ej= % Ei/n (2)
n
;= % v,/n (3)

The approximation mentioned here makes it possible to
evaluate the work of the distributed forces due to the
displacement X(z) only by considering the motion of the finite
elements net.

Parameters composing a single damped oscillator supporting
the finite element nets at the node i are spring k; and dashpot
Cy - Assuming that the mass of each finite element is
concentrated at its nodal points, the concentrated mass my 1is
first obtained by multiplying mass density p; by the area Aj
encompassing this nodal point i (Fig. 2), and then k; is
determined using the following equation so that this oscillator
resonates at the same frequency as the fundamental natural
frequency of the soil column fi0-

k= m, (2nf, )2 (4)
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where my=p;A;. Given the damping constant h, which is related to
attenuation of the shear wave travelling alo%g the depth, viscous
damping c; is finally obtained as:

¢;=2h, ‘/Tﬁ: (5)

When the alluvial layer is bounded by a diluvial hill, the
boundary of the model should be fixed, while wave transmission
should be taken into account when the alluvial layer is spread
far beyond the boundary. Assuming that an infinitely spread
plate of soil is supported everywhere by a dense group of springs
of the so-called Wrinkler type, a rigorous solution of wave
radiation due to excitation of a rigid hole on this plate in x
direction (Fig. 3) was obtained. Using the solutions of
displacement u, and normal stress 0, in radial direction and the
solutions of displacement ug and shear stress Tre in transverse

direction, we obtain the following values of k., and kg at an
arbitrary point (r,0) on this as:

X X
o r g2b ¥k, 0™ +2 Gk, ™ +K, ™) -28 Exk, % 4K, @)
kr= ; =u 1 * * 1 X
Ur XK, (b )+K, (b DI-E2KK (2 )
b 1 o a 1
(6)
%
T .1 ¥k @M +2Exk. K -2 Exk, 0™ +k, ™)
8 1 a 1 0 £ b 1 0
fo© g TV Axg %) +K, 5 -=ixk 2™ (7)
® P 0 t2 Ea 12
where u = shear modulus of soil, B=VP/VS, Vp = velocity of
longitudinal wave in the plate, Vg = velocity of shear wave in
iwr
X_ *_r x _ X *_ o — -
the plate, a = a, r » b = a /8, a = iy J'Di k,/wz + c /1w

°
i=y -1, Ky, K; = modified Bessel functions of order 0 and 1, and

by € 2 K, Caxd+asK, Cag))
X
o

£=
ar (2 K, () +baK, (ard)

So far as the above-mentioned assumptions are adopted, Eq. 6
and Eq. 7 are nothing but the rigorous expressions of stiffness
for the transmitting boundary in radial and transverse
directions. However this expression is not always applicable to
any case encountered. When r/r, approaches to infinity, Egqs. 6
and 7 converge to the following forms:

R2b™K, ™

lim k= u

r/rgee K, ™ (8)
a¥K, @™

lim k, = u———F(

£/ryo ® Ko(a*) (9)
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It should be noted that these equations represent stiffness at
the end of a semi-infinite thin rod on the "Winkler" type springs
with a linearly increasing cross-section along its axis (Fig.
4(b)). This is suggestive that it is possible to use not only
approximate stiffness shown in Fig. 4(b) but also that in Fig.
4(a) when the distance from an embedded structure to the model
boundary is fairly large. The approximation in Fig. 4(a) is
different in the pattern of wave radiation, and the stiffness at
the driving point is expressed as:

10
k = gzub™ (10)

_ x
ko= ua (11)
Thus, in order to make appropriate boundaries of the
proposed model, it is requested for us to grasp the shape of
radiated wave front in far field reviewing the shape of surface
layer.

ASSESSMENT OF APPROACH AND NUMERICAL EXAMPLES

Rocking stiffness of a cylindrical massless caisson
embedded in a surface layer with an infinite spread was computed
in frequency domain using the proposed soil model, and compared

in Fig. 5 with the rigorous solution obtained by Tajimiz). Here
the wave-transmitting boundary expressed in Eqs. 6 and 7 wvas
used. Fairly good agreement between these results validates the
present approach.

Since the vertical motion of soil deposit is neglected in
Tajimi's analysis, the plate element in Fig. 5 is assumed to be
of plane-strain type. However, it would be better to adopt
plane-stress condition than to assume plane-strain condition of
the finite element net when the stiffness is strongly influenced
by the surface portion of the soil layer. Fig. 6 shows a
tentative comparison between the numerical results under the
different plate conditions, that is, plane-strain condition and
plane-stress one. When the plane strain condition is assumed,
static stiffness increases and the steep descent of the real part
of the stiffness along the frequency axis implies the increase of
soil mass which vibrates with the embedded structure. Though
these two are an extreme and another, marked difference between
these results urge us to review the customarily used assumptions
in this field.

Fig. 7 shows a numerical example. The surface layer 1is
gradually getting thinner along the radial direction to the
extent of r/ry = 4, and outside of this extent is an infinitely
spread soil stratum. The variation of dynamic stiffness of a
cylindrical caisson embedded in this layer is computed and
compared in this figure with the aforementioned solution obtained
by Tajimi. Both the real part and imaginary part are sharply
bent at the fundamental natural frequency of the whole surface
layer. This frequency is shifted a little higher because of the
decrease of thickness of the stratum surrounding the embedded
structure. Below the natural frequency, there is no conspicuous
change in the stiffness variation, while the waving of both the
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real and imaginary parts stands out clearly when frequency
increases beyond the natural frequency. Since the damping
generated by wave radiation to infinity increases rapidly beyond
the fundamental resonance, it can be said that this phenomenon
resulted mainly from reflection of waves from an obtuse wedge of
the rigid bed rock.

CONCLUSIONS

The proposed method for evaluation of dynamic stiffness of
an embedded structure can account not only for the effect of
irregular shape and heterogeneity of the surrounding soil
stratum, but also for wave radiation into infinity. The model of
the surrounding soil layer is a composite of a finite element net

and simple-damped oscillators supporting its nodal points. A
good agreement between the result by the proposed method and
rigorous solution validates the proposed approach. Using this

model, effect of undulated bed rock on variation of dynamic
stiffness of a caisson with the frequency was examined. The
effect of reflection of waves radiating in radial direction
appeared clearly in the frequency range over the first resonance
of the surface layer.
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ALLUVIUM

Fig.2 Simple damped oscillator

EMBEDDED .i’=
STRUCTURE

(b)

Fig.1l (a) Soil~structure system
Divided into Columns;

Fig.3 A rigid hole on an infinite
(b) Mathematical Model plate
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