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SUMMARY

‘This paper deals with the dynamic soil-foundation interaction problem by the
three-dimensional time domain BEM. The soll-foundation model considered herein is
two rigid massless foundations, that is, one is an embedded foundation and the
other a surface one. Dynamic responses of these foundations subjected to plane SV
waves are obtained directly in both transient and steady states. In particular,
the effects of both incident and azimuth angles on the foundation input motion are
investigated through the present method.

INTRODUCTION

In recent years, it has been often done to investigate dynamic interaction
between rigid foundations by using the boundary integral equation method or the
boundary element method. For instance, Yoshida et al.(Ref. 1), Sato et al.(Ref.
2) and Wong et al.(Ref. 3) obtained the impedence functions and the foundation
input motion for such foundations. However, these analyses were carried out in
frequency domain and therefore followed by inverse transform in order to obtain
time history of response. On the other hand, recently, time domain BEM has drawn
much attention by the reason that we are able to obtain directly results in time
domain and more accurate transient response . Karabalis et al.(Ref. 4) first
applied time domain BEM to dynamic interaction problem and their results were
obtained by using relatively simplified procedure.

In this paper, the time domain BEM which the authors have already
developed(Ref. 5) is presented in the accurate form. First of all, in order to
show the accuracy of the present method, the obtained results are compared with
those of Dominguez(Ref. 6? for an embedded rigid foundation. Secondly, two closely
spaced foundations are considered for the soil-foundation model and the effects of
incident and azimuth angles on the foundation input motion of these foundations
are treated in both transient and steady state by using the present method.

METHOD OF SOLUTION

Initial-boundary value problem of elastodynamics is governed by the Navier
equation,

2 V2u+(A+e) Y ru+of=ou (z,t)€ERxT" (1)
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The solution of the problem is given on the smooth boundary in the form of the
following boundary integral equation (Ref. 7):

ey O Waz mi b, (20t-0)
“Towik (2. 75 y)u; (2. t-7) }dr dB(z) (2)

where A and g are lamé's constants and, @ 1is the density of the medium, and
Uir and Twi are three-dimensional fundamental solution and the corresponding
traction tensor in the infinite medium ,respectively.

Considering the discontinuity of stress along the wave front, we can
construct a time-stepping scheme to solve Eq.(2). By discretizing the boundary
integral equation (2) with constant elements with respect to space and linear ones
for displacements and constant ones for tractions with respect to time, we can

obtain the following matrix form :
1{u:‘—uz‘g [ GLH haut s {H H:,} 1 {s:. SH}
O B A Bl B A e e I T ] Bt
where subscripts e and f denote interface between the rigid foundation and the

soil , and free surface ,respectively. Subscript g represents the free field in a
half-space and superscript denotes time step.

Continuity conditions of displacements and tractions on the interface between
the rigid foundation and the soil are given as ,respectively,

{(ul}=CA){U"} (4)

(PM)=CTI{t}} (5)

where matrices [A] and [T] are transformation matrices depending on the shape of
foundation and mesh size employed, and vectors {U"} and (P"} are displacement at
the bottom of foundation and forces applied to the bottom of foundation
respectively. For the problem of foundation input motion, vector (P} reduces to
zero vector {0} .

By substituting of Egs.(4) and (5) into Eq.(3), the resulting set of linear
equations may be written in matrix form as

LCAY+CH,, )(A) (H,)  -(G.][ U] [a)
CH,) FICH,) =0 || ufj={ 8} (6)
0 0 (T | ts pY

where the right-hand side in Eq.(6) contains the contributions of both previous
steps and the free field which consists of the known values. Eq.(6) can be solved
easily by using the ordinary step-by-step scheme.

NUMERICAL RESULTS

The free-field displacements used in this paper and the response amplitude
are represented as

G= I A g exp (ika (2 3"=Cat) ) H(Car t=z-7") (7)
10 1= ) (Re () )P+ (1m () ) (8)

. . m) i . . . .
where A, is the amplitude, d” and 2 are unit vectors defining the directions
of motion and propagation respectively, k, , & and C. are the wave number, the

posi‘pign vector and the propagation speed of wave ,respectively, and H is the
Heaviside step function. According to Fq.(8), we are able to distinguish steady
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state from transient one for the response amplitude.

Firstly, in order to show the accuracy of the present method, let us consider
the dynamic response of an embedded rigid foundation subjected to incident SH
waves as shown in Fig.1. Fig.2 represents the comparison between the results
obtained by the present method and those of Dominguez . Two results are in good
agreements with each other for two incident angles,i.e., 6 =0°and 45°.

Secondly, let us consider the dynamic response of two rigid foundations which
are an embedded rigid massless foundation (=BASE-1) and a surface one (=BASE-2)
subjected to incident SV waves as shown in Fig.3. Fig.3 shows also material
constants and shape of foundations. Symbols § and ¢ in this figure denote incident
and azimuth angles ,respectively.

Figs.4~6 show time history of response amplitude for &,=2.0 and 6 =1 5 yand
each figure corresponds to azimuth angles ¢ =0°,180°and 90°respectively. In these
figures, horizontal axis represents dimensionless time,C,T/B and (o denotes
dimensionless frequency,wB/C,, where C, is the shear wave velocity of the
medium. It is made clear from the obtained results that transient state moves to
steady one around the dimensionless time 7.5, and components of all directions for
the azimuth angle ¢ =90°have non-zero values and complicated behaviours appear in
rocking motions at earlier stage .

Figs.7-8 show steady state of response amplitudes at BASE-2, and horizontal
axis represents dimensionless frequency Cts. It is shown that the responses of
incident angle 6 =15° are considerably different from those of single foundation
and especially horizontal displacement for azimuth angle ¢=1 80°is much larger than
those of free field.

CONCLUSION

In this paper, we presented the accurate form of three-dimensional time
domain BEM and applied to the foundation input motion of two rigid foundations. We
were able to obtain not only transient response but also steady response directly
by using the time domain BEM. In particular, we could make clear the complicated
behaviours between two foundations corresponding to azimuth angles.
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Fig. 3 Two Rigid Foundations Model
Subjected to Incident SV Waves
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