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SUMMARY

A method to obtain the response of a rigid foundation embedded in an
elastic half-space and subjected to a spatially random ground motion is
presented. The hybrid approach combining the finite element method and the
Green's functions for the half-space is employed for the numerical solution.
The results obtained indicate that the effects of the spatial randomness of the
ground motion on the response of the foundation are similar to deterministic
wave passage effects. Both effects involve a reduction of translational
components of the response in high frequency range and the creation of the
rotational components. These effects are consistent with those for the response
of a surface foundation subjected to the spatially random ground motion. The
method is applied to calculate the response of an actual inground tank to
compare with the recorded earthquake response.

INTRODUCTION

Strong ground motion data recorded in dense arrays reveal a degree of
spatial variability over short distances which may have important implications
on large-scale structures with relatively rigid foundations as well as
structures on multiple supports. To examine the effects of spatial variation on
the response of an embedded foundation the analytic representation of the ground
motion, which was used by Luco and Wong (Ref.l) and Luco and Mita (Ref.2) for
obtaining the response of surface foundations, is revised. An alternative
representation was proposed by Hoshiya and Ishii (Ref.3) to estimate the
response of surface and embedded foundations by use of weighted average of the
free-field motion. However, the weighted averages may not account for the
actual contact problem between the foundation and soil. In this paper, the
massless rigid foundation embedded in an elastic half-space and subjected to a
spatially random ground motion is considered. The method relies on the analytic
representation of the spatial variability and the numerical solution of the
mixed boundary problem by the hybrid approach (Ref.4).

MODEL DESCRIPTION AND ANALYSIS METHOD

The free-field ground motion arising from the seismic excitation in absence
of the foundation is described on the basis of a Cartesian coordinate system x,
v, z (x1, X3, x3) located on the surface of the half-space. The complex Fourier
amplitude of the free-field ground motion vector is represented by

T
{Ug(x,0) } = (Ug(x,0),Ugp(x,0),Ugs(x o)) (1)

in which ® is the frequency and Ugm represents the component of the ground motion
along xp axis. The superscript T denotes transpose. The components of the
free-field ground motions are supposed to be random functions of position x so
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that their first moments should vanish. This random field is also characterized
by the spatial covariance matrix which is defined by

~ T
[Be{x,x"',0)] = E[ {Ug(x,®) }{Ug(x", @)} ] (2)
in which the tilde denotes compiex conjugate and E[ ] denotes expected value.
The components of the 3X3 matrix [Bg] are assumed to have the form
Bgm(X,X',0) = Dgn(0) £ (x-x'],0)g(z,2',0) , (m,n=1,2,3) (3)
in which Dgpn(®@) defined by
Dgmn(®) = E[Ug(xo, @) Ugn(X,',0)] P (m,n=1,2,3) (4)

represents the components of the covariance matrix for the free-field ground
motion at any point on the ground surface. Since the ground motion is modeled
by a stationary random process, Dgmn is interpreted as the cross spectral density
of the m- and n-components of the free-field ground motion at xp on the ground
surface. The coherence function £ (Refs.l,2) is given by

2
f(x-x'|,0) = expl -(yo|x-x'[/B) ] (5)

in which y represents an incoherence parameter and B denotes an elastic wave
velocity. The function g in Eq.(3) is given in the form

g(z,z',0) = cos(0z/B)cos(wz'/B) (6)

which implies that the major components of the ground motion consist of
vertically incident plane elastic waves.
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Fig. 1 Description of Foundation and Coordinate systems

The effective foundation input motion is defined as the response of a
massless rigid foundation to the seismic excitation. The effective foundation

input motion can be represented by a 6X1 generalized displacement vector

T
{Ug(®) } = (Ugs Uz Uoss Uoar Ugss Uog) N

in which Upj, Upz, Ups denote the translational response of the foundation and
Ugar, Ugs, Uge correspond to the rotational response normalized by the reference
length a (Fig. 1). It has been shown (Ref.5) that {Upl} can be expressed by

-1 T
{Uo} = [k(w)] j{A(x)] {Ug(x) }dS (x) (8)

in which [k(®)] is the 6X6 impedance matrix and [A(x)] is the 3X6 body force
matrix distributed on the internal surface Ss. This body force matrix naturally
appears in the course of obtaining an impedance matrix by the hybrid approach
(Ref. 4). The m-th column of the matrix [A(x)] is the body force vector at a
point x on Ss corresponding to the m-th mode of rigid body motion of the
foundation. Therefore, the 6X6 covariance matrix

~ T
[Do(@) ] = E[{Ug(®) } {Uo(®) } ] 9
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for the effective foundation input motion for the embedded foundation can be
given in the form

-1 T ~ ~ -1
Do(@) 1 = k(@1 [ [ [A)] [Bglx,x',0) 1 [A(x')1dS (x)dS (x') [k(@)] (10)

in which [Bg(x,xum] is the covariance matrix of the free-field ground motion
defined by Eq. (2). From Egs.(3) and (10) the components of [Dp(®w)] are given by

3 3 pa
DOpq((D) = ZzAm(m)ngn(m) (prq=1121---16) (11)

m=1n=1

in which the frequency dependent covariance coefficients ApP,9 are defined by

rq -1 ~ ~ -1
Am(®) =[k(®)] fs f, Andx, 0) Arg(x', @) £ (|x-x"], ©) dS (x) dS (x") [k (0) ]
(pra=1,2,...,6; m,n=1,2,3). (12)

It is obvious that the relationship between the covariance of the effective
foundation input motion {Up} and the covariance of the free-field ground motion
{Ug} is completely described by the covariance coefficients given by Eqg. (12).

NUMERICAL RESULTS AND COMPARISON WITH REAL RESPONSE DATA

The covariance coefficients for square foundations of their dimensions 2aXx
2a are obtained. Numerical values for the square root of the coefficients AP’
are shown in Fig.2 (h/a=0.5) and Fig.3 (h/a=1.0) versus the dimensionless
frequency ag=wa/Vgs for values of incoherent parameter y=0, 0.1, 0.2,..... , 1.0.
The reference point is on the center of bottom surface of the foundation. It is
noted that the S-wave velocity Vs is substituted for the elastic wave velocity B
when obtaining A;PP and A,P,P and the P-wave velocity Vp is used to obtain AzP3P.
The elastic uniform half-space is characterized by a Poisson's ratio v=0.4. The
body force App(x,®) are obtained by the hybrid approach (Ref.4). The soil
region occupied by the foundation is discretized by 11X11X5 finite element mesh
for the foundation with the embedment ratio h/a=0.5 and 11X11xX8 finite element
mesh for the foundation with the embedment ratio h/a=1.0. Body forces App, are
distributed on two and three parallel internal surfaces Ss for h/a=0.5 and 1.0,
respectively. From these numerical values it is found that the approximations
employed for the surface foundation (Ref.l)

1 2 3 & &6
Dou”Alquur D022=A2Dﬂ21 Do:azA?ﬁDqsal Doss"‘Alquu"'Aanzz (13)

are also valid for the translational and torsional components but not for the
rocking components. While the rocking components are mainly induced by the
vertical component of the ground motion for the surface foundations, those for
the embedded foundations are generated by the horizontal components as well as
the vertical component. The approximations of the rocking components of the
effective foundation input motion for embedded foundations are expressed by

4 “4 5 5
Dou= AZZDq22+A$Dq331 Doss = A11D0H+A33Dq33 . (14)

The square root of BApP,P can be interpreted as an amplitude of the transfer
function between Ugn, the m-component of the free-field ground motion, and Ugp,
the p-component of the generalized displacement vector of the effective
foundation input motion. The coefficients for the incoherence parameter y=0
correspond to the response of the foundation to a vertically incident S- or P-
wave with no random components. The results presented in Figs.2 and 3 indicate
that the spatial randomness of the free-field ground motion induces a reduction
of the high-frequency translational components of the response of the foundation
and the creation of rocking and torsional response components.
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Fig. 2 Square Roots of the Covariance Coefficients
for an Embedded Foundation (h/a=0.5)
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Fig. 3 Square Roots of the Covariance Coefficients
for an Embedded Foundation (h/a=1.0)
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To examine the applicability of the v
current method, the covariance coefficient

214! was calculated for the actual inground

tank (Ref.3). The cylindrical inground g
tank was modeled by a square. foundation =L vyl —7-2
with the equivalent bottom surface and the 50.000

same embedment depth. Though the current ’
random model was proposed for a uniform :
half-space it may also be applicable to the
horizontally layered half-space if the
foundation does not extend over multiple

layers and is embedded only in the top soil —j-_-i%’-}‘l-”i‘/
layer (Fig. 4). The amplitude of the s 24, 0mr 5= 150ms
transfer function between the horizontal 7_)“ Vs=380mis
motions recorded on the ground surface and

on the bottom of the inground tank is shown Fig. 4 Inground Tank
in Fig.5 along with the square root of the

covariance coefficient 231! for values of 15 (T'G/G,L'““) : _ : :
incoherence parameter y=0, 0.2, 0.4, 0.6. GL-1m T6 . Observation

It is clearly found that the effects of the
spatial randomness of the ground motion on

the horizontal response are not significant 2 1.0
in the low frequency range but become large 32
in the high frequency range. In this case, <=
the best fitting curve seems to be the 5

o
h
w0

values for y=0.6. This fact indicates
that though it is still difficult to
quantify the incoherence parameter y the

introduction of the random field for the 0.0 . : . . .
characterization of the ground motion may 0 1 2 3 4 5 6
give reasonable estimation for the response Frequency (Hz)

of large-scale structures subjected to the

s, , s i r Functions
Seismic excitations. Fig. 5 Transfe

CONCLUSIONS

A method to obtain the response of a rigid foundation embedded in an
elastic half-space and subjected to a spatially random ground motion has been
presented. The method relies on the analytic representation of the spatial
variability of the ground motion and the use of the hybrid approach. The
numerical results obtained for square foundations with embedment ratios h/a=0.5
and 1.0 indicate that the effects of the spatial randomness of the ground motion
on the response of the foundation are similar to deterministic wave passage
effects and consistent with those for the surface foundations. The effects
involve a reduction of translational components of the response in the high
frequency range and the creation of the rotational components. The method has
been utilized to estimate the response of an actual inground tank to compare the
results with the recorded earthquake response. It has been recognized that the
introduction of the spatial randomness gives a reasonable estimation.
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