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ABSTRACT

To compute the impedance functions for embedded foundations, an unified formulation, which
covers the direct- and indirect- boundary element methods (BEMs), is presented based on the
weighted residual technique. A modified indirect BEM for rigid foundations is proposed based on
considering the resultant effects of the rigid body condition. Compared with the conventional BEM,
this method requires no traction Green functions and much less source forces. The method is vali-
dated by comparison with the results obtained by other methods for a cylindrical foundation embed-
ded in a layered stratum.

INTRODUCTION

By use of the substructure approach, two basic problems, involving the soil and the massless
foundation, must be solved in the linear soil-structure interaction analysis. The first one
corresponds to the calculation of the dynamic relationship between the external forces and the foun-
dation response. In the case of rigid foundations this force-displacement relationship is represented
by the 6x6 impedance (dynamic stiffness) matrix. The second one corresponds to the calculation of
the foundation response to the seismic excitation. These two basic problems are intimately related
such that the second one can be readily solved, if the solution of the first problem and the free-
ground motion are known .Y

Recently, a considerable effort has been directed toward the application of BEMs. The tech-
nique is based on representing the wave radiation field as resulting from source forces in a weighted
residual sense. The advantages over other numerical methods, such as the finite element method
(FEM), proceed from an implicit satisfaction of the radiation condition at infinity and a reduction of
problem dimension. However, BEMs are less competitive for layered media, because the Green func-
tions are so sophisticated that the requirement of a large number of source forces will lead to long
computing time for the boundary integral.

The objective of this paper is to propose a modified indirect BEM based on considering the
resultant effects of the rigid body condition, which leads to a formulation involving no traction
Green functions and much less source forces. The first part of the paper deals with the formulation
for embedded foundations of arbitrary shape. The second part gives the validation of the method by
comparison of the results for embedded cylindrical foundations with those obtained by other
methods.

STATEMENT OF THE PROBLEM

A massless rigid foundation occupies the volume V' and is perfectly bonded to the soil along
the interface S. The soil, in V, is assumed to be a viscoelastic medium consisting of parallel layers
overlymg a half-space (refer to Fig.1 ). The foundation is subjected to external forces with the har-
monic time dependence &' (since the responses are with the same time dependence, ¢! will be
omitted and only the amplitudes are concemed) The external forces are represented by the gen-
eralized force Fo={ Fy,, Foy, Fo,, Moz, My, M,, }T. The subscnpts 2,y denote the direction of com-

ponents. Fy can be evaluated from the traction vector T(x) {T,(x), Ty(x), T.(x)}" on the interface S.
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Fy = [ a(x)7 T(x) dS(x) @)
where a(x) is designated as a rigid body motion influence matrix given by

100 0 —(z—%) (y-v)
a(x) =10 10 (z—z) 0 —(z—=) (2)
001 —(y~y) (s—2) 0

The unit normal v to the surface § is taken as positive when pointing into V'. We can see that
( Foss Foz Fo, ) and ( My, My, My, ) are the resultant forces and the resultant moments acting at a
reference point ( zg, yo, 29 ) in the foundation. The foundation response is represented by the gen-
eralized displacement at the reference point Uy = { Uy, Uy, Up., Opqs By Oy, }7, consisting of three
translations ( Uy, Upy, Uy, ) and three rotations ( @, Oy O, ). The displacement field in the soil
U(x) = { Uy(x), Uy(x), U(x) }T must satisfy the Navier equations of motion in each layer, the con-
tinuity conditions across layer interfaces, the condition of vanishing tractions on the free surface of
the soil, the radiation conditions at infinity and the

rigid body motion condition Fig. 1.
U(s) = a(x) U zes 3)

Foundation-soil model and notation

This mixed boundary-value problem
corresponds to the computation of the 6x6
impedance matrix K,. The generalized displacement
and the generalized force are linearly related by

FO‘_"KO UO (4)

For the problem of symmetric geometry about the z
axis, Eq.(4) can be written in the form

Fo. (Kaw 0 0 0 Kmy O] U,
Fo 0 Kgg 0 -Kgm 0 0 ||Tp
Fos e 0 0 Kw O 0 0 Uo. Fig. 2. Free-field and source force model
Mo/a|T%% 0 Ky 0 Kppe 0 0 ||a0,
Myy/a Kyg O 0 0 Kyy 0 [|a®, L \ V" St /
\
Mo/ e 0 0 0 0 0 Kpplla®, / xl —
i L ) S— H ‘\ 7
" 1
) — :
in which G is a shear modulus of reference, a is a V Mecoaeo--- ’
length of reference ( for a cylindrical foundation a is

taken as the radius ), and Kyg, Kpg Kvv, Kpp and
Ky = Kyg are the normalized horizontal, rocking,
vertical, tortional and coupling impedance func-
tions, respectively.

FORMULATION

We consider the free-field under strained by a source force F(y) = { F,(y), Fy(y), Fu(y) }” distri-
buted on a surface §° within ¥V’ (refer to Fig. 2). The resulting displacement and traction fields
can be obtained from

UR) = [, 6lx) Fy) 45° 5) T5x) = [, Hixy) F(y) 45" (3) (6).(7)

14
where G(x,y) is the 3x3 displacement Green function matrix and H(x,y) is the 3x3 traction Green
function matrix, in which the j th columns correspond, respectively, to the displacement vector and
the traction vector at x due to a unit harmonic force at y acting in j direction.

Weydeﬁne the difference between the actual fields {U(x), T(x)} and the resulting fields
{U®(x), T®(x)} in V as the error field
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{60(x), 6T(x) } = { U(x)~U(x) , T(x)-T%(x) } ®)

v
Obviously, if F(y) is distributed such that U%(x) and/or T%(y) on § coincide with the original boun-
dary conditions, the error field will be zero and exact solution can be obtained . In the numerical
procedure, it is possible to satisfy boundary conditions in a weighted residual sense such that

[, Wa)” 50() ds) - |, W,x)T 6T(x) dS(x) = 0 9)

in which the vectors Wy(x) and W(x) consist of certain weighting functions. It is desirable to minim-
ize the error field by proper choice of these weighting functions. For the problem considered, we may
achieve the formulation under three different considerations:

1) Wix)=T(x), Wyx)=U(x); 2) Wix)=T"x), 6T(x)=0; 3) Wy(x)=U¥x), §T(x)=0. (10)
Substituting these conditions into Eq.(9) yields three integral equations, respectively.

L. [FO) 760w T(x)as(x)as" (7)= [, [Fr) Hox) "U(x)aS()dS” (3) (11)
L, [FO)HER) U@ dS@)dSs” ()= [, [, [FO) Hx) TG0y YR )as(x)as’ (v)ds (1) (12)
L [F0)T6wn)TU®as@)as ()= [, [ [FO)T6(xx)T6(xy )F(y")dS(x)ds" (y')ds' (s)  (13)

Egs.(11),(12) and (13) can also be derived from, the Maxwell-Betti’s dynamic-reciprocity theorem,
the condition of extreme value of work (Euler’s equation), and the least square error technique,
respectively. Eq.(11), known as the formulation of the direct BEM, gives the relation between the
boundary values. On the other hand, Egs.(12),(13), the formulations of the indirect BEM, give the
source force distribution by imposing the given displacement boundary condition. Eq.(13) is pre-
ferred here, because it does not involve the traction Green function. For a rigid foundation in which
U(x) is given by Eq. (3), it is possible to write

F(y) = A(y) Uy (14)
where A(y) is a 3x6 matrix which gives the source force distributions on §° required to produce unit
rigid body displacements of the surface S.

Once A(y) has been determined, the contact traction can be obtained by substituting Eq.(14)
into Eq.(7)

v v 14

T(x) = [ H(xy) A(y) 48" (y) U = T(x) Up (15)
in which I'(x), designated as a contact traction matrix, is a 3x6 matrix whose columns give the con-
tact traction vectors produced by unit rigid body displacements of the foundation. Finally, substi-
tuting Eq (15) into Eq. (1) leads to the desired impedance matrix

Ko = [,a(x)7T(x) ds (16)

By the above formulation, the contact traction must be evaluated as an intermediate solution.
Since the primary interest is placed on evaluating the generalized force, the computation of the
unnecessary traction requires much more efforts than enough. In fact, numerical computation of
tractions demands deliberate considerations. This defect may be overcome by an alternative formu-
lation proposed here. In the view of that the generalized force must be in equilibrium with the
source force on §' and the inertia within V', we can obtain the impedance matrix directly from

Ky = j; a(y)T A(y) 45" (3) + o fv, js . p(x) a(x)T G(xy) A(y) 45’ (v) @V’ (x) @mn

APPROXIMATE ANALYSIS

To simulate the radiation filed requires a large number of source forces, especially at high fre-
quencies. This will result in not only long computing time but also a problem of divergence .*® In
the case of rigid foundations which have only 6 degrees of freedom, it is possible to reduce the
number of source forces by estimating the equivalent rigid body motion.

By use of the reciprocity theorem, we have
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v v
[,T()7 U%(x) aS(x) = [ e(x)” T7(x) dS(x) (18)
v
in which UZ(x) is a resulting displacement vector from the source forces and T®(x) is the correspond-
ing traction vector. We introduce the decomposition
*
UR(x) = a(x) Uy + U(x) x€S (19)
in which U,, designated as an equivalent rigid body motion, is a 6x1 generalized displacement, and
¥*

the remaining deformation vector U(x) satisfies the condition

L T)? a'ff(x) dS(x) = 0 (20)
Then Eq.(18) reduces to
[T ax) ds(x) Uy = [ a(x)” TR(x) 4S(x) (21)
Considering the symmetry of the impedance matrix yields
Ky Uy=Fy (22)
If we have six sets of different {U(x),T(x)}, the 6x6 impedance matrix can be evaluated by
Ky=[F][Uo]? (23)
where [Fo]=[ FL, F2,..., F§] and [Up]=[U}, U3 ..., US], in which Uj indicates one of the

equivalent rigid-body motions of the six different resulting displacements and Fj is the corresponding
generalized force.

*

Since the deformation U(x) must satisfy Eq.(20), the decomposition of Eq. (19) involves the
unknown contact traction matrix I'(x) and can only be solved approximately. The least square error
technique is available for this purpose. i.e.,

o

o [ [ UF@)~e(@) Uy 7 [ UR(0)~a(x) Vs ] dS(x) = 0 (24)
8U, s
which yields
Up=H? js a(x)7 U¥(x) dS(x) (25)
where H is the 6x6 matrix given by
B = [ ()7 afx) dS(x) (26)
If we choose the reference point at the centroid of the surface S, then
H=diag{8,8,8, 1,1, I} (27)

in which § and I; denote, respectively, the area and the second moment area about i axis of the sur-
f'fmc.e §. We can see that the approximate solution is based on the assumption that the equivalent
rigid body motion corresponds E«o the weighted average displacement. This assumption is acceptable

when the approximate solution U(x) = [U¥(x) —a(x)E* [9 o(x)T UR(x)dS(x) ] satisfies
LT U ase) »
jsf(x) UE(x) dS(x)

. . . . . v . . . *‘ M
Eq.'(28) is gustl_ﬁed by viewing that when I'(x) is a relatively slowly varying function and U(x) is
ra.pl;ﬂy oscillating, the numerator will be relatively small due to a self-cancelling on the integral
path.

) Now we can see that if the imposed displacement boundary condition happens to be the
equivalent rigid body motion, the solutions obtained by BEMs will be correct. But this is not
guaranteed when the number of sources is not sufficient enough. The results may be modified by use
9f Ijlq.(23). In this case, [F,] corresponds to the solution of the impedance matrix computed from the
indirect BEM, and [Ug] must be evaluated from the resulting displacement UR(x) computed from
Eq.(6) after the source force distribution has been determined.

(28)
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NUMERICAL COMPUTATIONS AND DISCUSSIONS

To validate the proposed method, the impedance functions for a cylindrical foundation embed-
ded in a viscoelastic layer overlying a rigid half-space are computed. The semianalytical Green func-
tions for ring loads obtained by E. Kausel et ol ,® have been employed. These solutions are based
on a discretization of the medium in the direction of layering and a normal mode expansion analysis
in the wave number domain. The integral transform from the wave number domain to the spacial
domain can be carried out in a closed form. In this study, the numerical computation is conducted
by discretizing all the variables involved with linear shape functions. The material damping in the
soil is introduced by taking the complex P— and $- wave velocities V,( 1+ if,) and V,( 1+ i,) in
which £, and £, are hysteretic damping radios. The characteristic values of the soil-foundation model
are presented in Fig. 3. The impedance functions are referred to the center of the foundation and
computed for a number of values of the dimensionless frequency ap=wa/V, in the range of engineering
interest.

The accuracy of the solutions is checked by comparison with the results obtained by the FEM
with lateral transmitting boundary. The efficiency of the proposed methods is demonstrated by com-
paring computing time with conventional indirect BEM. Two cases with different number of source
forces are considered.

First, the computation is performed for the model shown in Fig. 4(case 1), in which the
number of source points, the observation points on the boundary § and the observation points within
V' (N,NEN,) are (9,30,10 ) , respectively. Each source point represents one ring load and obser-
vation points denote the nodal position at which the response is to be evaluated. The source surface
§’ is offset from the actual interface S by a distance. Considering both accuracy and economy, the
observation points are densely spaced near the source while relatively sparsely far from it. The
results of ( Kgg, Kvvs Kaary Koo Kay ) are plotted in Fig. 5. Note that the results agree quite well
with those by FEM and by the conventional indirect BEM. Significant differencies appear only at
high frequencies, which is believed can be reduced by increasing the source and observation points.
The computing time required for the conventional indirect BEM has been reduced considerably by
the proposed method, since the computation for the traction Green functions is not involved.
Although the inertial force in the interior volume V' has to be considered, it dose not need much
effort, since it can be sufficiently accounted for when the element size of the grid is smaller than, say,
1/10 of the wave length.

Secondly, the number of source points is reduced to two as shown in Fig. 4(case 2). Solutions
obtained by the conventional indirect BEM diverge at high frequencies, while those modified by the
proposed method still agree well with other results in the first case.

CONCLUSIONS

A modified indirect BEM to compute the impedance functions for embedded rigid functions is
proposed and applied to a cylindrical foundation embedded in a viscoelastic layered stratum. The
results are compared with those obtained by FEM and indirect BEM. Numerical computation has
revealed that the conventional indirect BEM is not efficient for layered media, because it requires a
large number of source forces and long computing time for evaluating the Green functions. By com-
parison, the proposed method requires no traction Green functions and much less source forces.
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Fig. 3. Cpylindrical foundation-soil model

Fig. 4. Location of
X  source points
o  boundary observation points
® interior observation points
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