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SUMMARY

The seismic response of a massless flexible circular plate with a rigid ring
supported on a homogeneous viscoelastic half-space and subjected to the Rayleigh
wave is studied. The mixed boundary value problem for the case of relaxed contact
conditions between the plate and the half-space is reduced to Fredholm integral
equations of the second kind which are solved numerically. The numerical results
show that the maximum response of vertical displacements inside the plate may
become larger than the vertical component of the free field motion.

INTRODUCTION

Most studies of the earthquake response of structures are based on the
assumption of a rigid foundation. In general, it is also assumed that the
earthquake excitation can be represented by vertically incident seismic waves.

The assumpiton of a rigid foundation may not always be valid. In fact,
significant out-of-plane deformations of foundations have been observed in dynamic
tests of actual buildings (Ref. 1). On the other hand, when obliquely incident
seismic waves are considered in the analysis, it is found that out—of-plane
deformations are also induced to flexible plates (Ref. 2). In spite of these
situations, few studies have been addressed to the analysis of the effect of the
flexibility of the foundation. Analyses based on discretized representations of
the flexible plate have been presented (Refs. 3, 4). Integral equation approaches
have also been presented for the analysis of flexible circular plates with a rigid
perimeter and with a rigid core subjected to a harmonic vertical and a rocking
moment (Refs. 5, 6).

This study describes the seismic response of a circular flexible plate with a
rigid perimeter supported on a viscoelastic half-space, when subjected to Rayleigh
wave excitation. The plate is assumed to be rigid for in-plane motion and the
analysis considers the out—of-plane deformations of the plate. The problem is
solved under the assumption of relaxed contact condition; i.e., frictionless
contact at the interface between the plate and the underlying half-space for
vertical and rocking motions. The mass of the plate is neglected, and attenuation
in the half-space is included by use of complex shear moduli. The method of
solution relies in reducing the mixed boundary-value problem to infinite set of
Fredholm integral equations of the second kind, which are solved by standard
numerical method. The displacement response may be expressed by infinite series.
One of the features of the analysis is that part of kernels of Fredholm integral
equations are obtained analytically that makes numerical calculations easier.
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ANALYSIS OF PROBLEM

Statement of Problem The foundation and soil system considered is shown in Fig.
1 and consists of a massless flexible circular plate of radius a with a rigid
perimeter ring supported on a viscoelastic half-space. The plate is subjected to
the Rayleigh wave propagating in the x direction as shown in Fig. 1. This paper
deals with only the out-of-plane deformation of the plate.

Referring to the cylindrical coordinate system (p,9,z) shown in Fig. 1, the
vertical displacement of the Rayleigh wave for a homogeneous half-space may be

expressed by I o) I

u,” (r,8) = ;g)uzn(r)cos né (1)
where I = n

U, (r) = Roe (-1)%7 (va r) (2)

In Egs. (1) and (2), go=l, €,=2 (n2l), r=p/a, ao=wa/VS, Y=VS/VR, in which Vg and
Vg are the shear wave and the Rayleigh wave velocities, respectively, R, is the

vertical amplitude of the Rayleigh wave, W is a circular frequency and J_( ) is
the Bessel function of order n. The time factor exp(iwt) is omitted in Eq. (1).

The contact conditions on the soil surface, z=0, for vibrations of the plate

are 24
u (r,8) = Z[a rn+w (r)lcos nf; 0=sr=1 (3)
z n=o0 n n
cz=0;r>1 and Trz=rez=0; 0sr<owm (4)
in which u, is the total displacement of the plate; J,, T., and Tg, are the stress
components on the soil surface; and
Go = A, ay = aA¢ and o = 9;0122) (5)

in which A, and A, are the vertical and rocking angle of the rigid ring,
respectively. The term wn(r)cos n® in Eq. (3) represents the elastic deformation
of the plate and must satisfy the differential equation

(e} 2 2 4
}E(%;i + ;g; - gq)zwn(r)cos né = %—cz(r,e) (6)
n=o

where D is the flexural rigidity of a plate. The boundary conditions for wn(r)

are w, = dw /dr = 0; r = 1 (7)
It is convenient to introduce the decomposition
& & I D R
u (r,8) = g%uzn(r)cos ng = é;[uzn(r) +u, (r) + u, (r)] cos nb (8)
@ [o.2]
o_(r,8) = - D R 8
z ) nZ__‘;,Uzn(r)cos né = nZo[cxzn(r) + Gzn(r)]COS n (9)

where superscripts I, D and R denote the incident, diffracted and radiated field,

respectively. If u,; is set as in the form

u,D(r) =-u (x) =-R.e (-1)"7_(ya,z) (10)
the corresponding stress for diffracted field, 022, represents the contact stress
necessitated to keep the plate immovable. From Egs. (3), (8) and (10) we obtain

u Biry = u (x) = a ™+ w_(x) (11)

zn zZn n n
Integral Representation Following the approach described by Luco (Ref. 7), the

vertical deformation and normal contact stresses components on the surface z=0 can
be written in the forms

J o J .
Un () = [ G(x,a )b " (x)J (rx)dx; J = R and D (12)

II-338



J U* o J .
0, (r) = [ ¥, (x)T (rx)dx; J = R and D (13)

where p* is the complex shear modulus of the soil; wzg is the unknown functions
to be determined by the contact conditions between the plate and the soil. The
function G(x,a.) in Eq. (12) depends on the dimensionless frequency ao=wa/Vs, and
is given in Ref. 6.

Substituting Egs. (10) and (11) into Eq. (12) and considering the contact
condition expressed by Eq. (4) we obtain set of dual integral equations for the
diffracted and radiated fields as follows:

SZG(x,ao)wZE(x)Jn(rx)dx =—uzr'T;(r); 0<r<1 (l4a)
o, D)3 (rx)ax = 0; r>1 (14b)
* R

IOG(x,ao)wzn(X)Jn(rx)dx = anrn +w (r); 0srsi (15a)
Jo b ()3 (rx)dx = 0; r>1 (15b)

Substituting Eq. (9) into Eq. (6) and considering the expressions of Eq.
(13), we obtain

2 2 ¥4 3 o0 D R
G e LByt () = BRI, () 4y, (x) 19, (rx)dx (16)

The solution of Eq. (16) that satisfies the boundary conditions given by Eq. (7)
can be expressed by
_ u*adw. D R
wo(r) = B2 [y D(x) + g, (x) I (r,x)dx (17)
where

n+2 n n _n+2
_nr " “—(n+t)r r-r ' 1
Hp(rox) = B g (o 4 5= 5 G0+ e ) (18)

where J'(x) = dJ_(x)/dx
n n

Reduction to Fredholm Integral Equations The dual integral equations for the
diffracted field expressed by Egs. (l4a) and (14b) can be reduced to the Fredholm
integral equation by use of the Copson's method (Ref. 8). As a first step in this
method, G(x,ao) in Eq. (l4a) is written in the form

G(x,a ) =- 1;" (F(x) + 1] (19)

As a second step in the procedure, the solution of Egs. (l4a) and (14b) are
written in the form

D Bufn ) 8 x372[ 1729 P(t)g (tx)dt 20)
wzn(x) = 17 - v nX o zZn n—£% (

where By =J2/m 22nn!/(2nﬁ

In Eq. (20), ¢z£ is functions to be determined. Eq. (20) satisfies Eq. (14b)
identically and substitution from Eq. (20) into Eq. (l4a) leads to the Fredholm
integral equation;

1/2
¢Zg(t) +5; Kzn(r,t)dazg(r)dr = i%ol")__ Tp_ve(yapt) 5 0<t <1 (21)
where w "
K,n(T/t) = VET[ XF(x)T 3, (£x)3, 3, (1x)dx (22)

In similar manner, the dual integral equations expressed by Eqs. (15a) and
(15b) can be reduced to another Fredholm integral equation. We set Ypn @s in the

form
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v Rx) = °n w2 g2y R (tx)dt 23
zn'X) =m 5 Xt d>zn(t)Jn—l/z x) (23)

Eq. (23) satisfies Eq. (15b) identically and substitution from Eq. (23) into Eq.
(15a) leads to

R 1 W R
0, (E) + K, (1,8) + K (1,£)1¢, (1)at
= o t? v R (0P M(r,E)0, D(1)aT 3 0SSl (24)

where

3 o
(T t) A\/—‘EH(-;a_\,) "l:.!‘/z'\-oxg/2 Jn-VZ(TX)

gLt ety (r,x)arlax  (25)
(Ddto fr2_ 2 n?

The kernels of Eq. (25) can be expressed in closed forms and first five terms, n=0
to 4, are given in Appendix. The Fredholm integral equations expressed by Egs.
(21) and (24) can be solved by the standard numerical procedure. In Eq. (24)
unknown factors, 0,=A, and &j=al$, are included. These unknowns can be determined
by setting the total vertical force and the total moment, that the normal contact
stresses exert on the plate, to zeros. These conditions can be expressed by
[;rn+1[ozg(r) + ozg(r)]dr =0y n=0,1 (26)
Total Displacement and Contact Stresses Once the functions, ¢ (t) and ¢ (t),
have been obtained the total displacement and normal contact stresses can e
evaluated numerically. The expression for the n-th component of the total
displacement can be obtained by substituting Eqs. (19) and (23) into Eq. (15a);

u, (r) = J— njofz [6,n(t) + [, 8,R()K, (t,7)arlat (27)

Similarly, substitution from Egs. (20) and (23) into Eq. (13) leads to the
following expressions for the components of the contact stresses.

n _ (t)
Uzg(r) == g%%nf—_i;%— Bnu*F n 1df -_‘/__7— (28a)

Re)
o f) = o, JE T 4 ™) (28b)

A foan g2

Eq. (26) can be rewritten into more convenient forms by substitution from
Egs. (28a) and (28b) into Eq. (26);

Ryf] o,0(t)dt + j’oldszlg(t)dt =0 (29a)
1
-21va° t4>z]i(t)dt + I:t¢zi{(t)dt =0 (29b)

From these equations unknowns Av and A¢ can be determined.

NUMERICAL RESULTS

In this study, the flexibility of the plate relative to that of the soil is
characterized by the parameter, ¢, defined by

a = pad/p (30)

where U is the real shear modulus of a soil. The material damping of the soil has
been assumed to be of hysteretic type; i.e., W¥=u(1l+2iB), where B is the damping
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coefficient and is chosen as B=0.05. Poisson's ratio of the soil is chosen as
v=0.4 in the numerical calculations. For the case v=0.4, the vertical amplitude
of the Rayleigh wave can be written as R;=1.659iRy, where Ry is the horizontal

amplitude, and also the wave velocity ratio as Y=VS/VR=1.O614.

Convergence of Series As the displacement response of the plate is expressed by
the infinite series, it is important to investigate the convergence of the series.
In Figs. 2(a) and (b), the real and imaginary parts of displacement curves
normalized by Ry are shown for various values of the upper limit of order n and
for a =4. These results indicate that the convergence of series is fairly rapid
and the number of terms required to get the reliable results is sufficient with
first five terms, n=0 to 4, for frequencies less than ao=4.

Displacement Response In Figs. 3(a) to (c), displacement response curves along
the x axis of the plate are shown for ao=1, 3 and 4, and for different values of

@, It is noticed from the results that for higher frequencies the displacement
responses inside the plate become larger than the vertical component of the free
field motion. This tendency become more significant with increase of flexibility
of the plate. In Figs. 4 and 5, vertical and rocking amplitudes of the rigid ring
are shown vs. the nondimensional frequency a, for different values of a. These
results indicate that the flexibility of the plate has remarkable effects upon the
response of the perimeter ring.

CONCLUSIONS

An analytical procedure to obtain the seismic response of flexible circular
plates with rigid perimeter supported on a homogeneous viscoelastic half-space and
subjected to the Rayleigh wave has been presented. This procedure may be easily
extended to the cases of a layered soil and of other incident waves. It has been
shown that the effects of the flexibility of the plate on the displacement
response are significant especially for higher frequencies and the maximum
response of the vertical displacements inside the plate may become larger than the
vertical component of the free field motion.
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APPENDIX

Kzg('f:t) - F[% _ tz+T;+t21:2 tz;TZlog 2 4 —(E-Z-L)jlog(tﬂ') + —(—t;—ﬂ-zlog{t—-rl ]
Kz:'('t,t) = I‘[t—;+%(t2+12)——g—t313+ ttlog 2 - (—tZT—)zlog(twc) + -(—t—;—.f)—zloglt—“rl ]
K e) = T ag [ BT BT, Biara ez, L 32 pege (B agay
i+ ESEUES e £ () S

- %—ts‘rs - %gt’ral
KzZ”'t’ - r[u;z_ri)zéggggggzrﬂsﬂ)log ﬁ' _ S(tzg‘rz) (t2+1:2)1(§§;-§%212+5'c")

g

where T = TBI=V]
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