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SUMMARY

Coupled lateral and rocking motion of a circular cylinder 1is
formulated rigorously without making use of approximate synthesis of
solutions of relaxed boundary conditions. The dynamic compliance of
the ground obtained by the new method is applied to vibrations of a
rigid cylinder excited by vertically ascending transversal elastic
wave of the ground. Frequency and damping coefficient of the
predominant modes are calculated and it is demonstrated that the
second predominant mode of actual tall structures practically
vanishes. These results realize reasonable interpretation of
seismic behavior of actual structures.

INTRODUCTION

To seismic vibration of large and tall structures is the
coupling of lateral and rocking motions most essential. Despite of
the importance, formulation of their theoretical model, dynamics of
a circular cylinder attached to elastic half space, has long
depended solely wupon the approximate synthesis of solutions of
corresponding decoupled modes which are only feasible under the so-
called relaxed condition of contact {Refs.l and 2). Although these
works employed a similar approach, their results on the dynamic
compliance of the half space exhibited considerable discrepancy;
the formula of estimating the response of coupled mode has remained
unestablished.

Recently, the author developed a new method to calculate the
dynamic response of a circular disk on elastic half space (Ref.3).
This method can not only solve the relaxed condition problems but
also formulate rigorously another condition of contact: welded
surface of contact. Simultaneous integral equations are derived
which relate the three components of displacement of the surface of
contact to three components of stress of contact, and one can easily
solve them numerically in good accuracy.

If the disk is rigid, the solution of these equations has a

particularly simple form: a stiffness relation representing the
resultant force of contact as a linear combination of two variables
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describing the degree of freedom of motion of the disk. Seolving
this relation simultaneously with the equation of motion of the
disk, one obtains the response of the disk against any desired
frequencies of excitation. As a result, one can identify the
predominant vibrations of the disk, particularly their frequency and

damping ability.

These results are compared with the data obtained from
measurement of incident vibration of an anchorage of a suspension
bridge. Main features of its vibrations are reasonably interpreted.

DERIVATION OF DYNAMIC STIFFNESS OF ELASTIC HALF SPACE

Consider a circular cylinder attached vertically to elastic
half space. Let the center of the surface of contact be the origin
and let the z-axis be the vertical line oriented downward; i.e.,
interior to the half space. We employ the cylindrical coordinates
(r,%,z).

It is known that the components of displacement of the surface
of contact, say ( ur, ug, Ug ), are represented in terms of integral
transform of the stress of contact ( T.,T4,T, )

Up(r) Gy1(r3s) Gya(rs3s) Gy3(rss) || To(s)

R
Ug(r)|= ﬁJOS G21(r;s) Gpa(rss) Gp3(r;s) || Tg(s)|ds (1)
Uy(r) G31(r;s) G32(r;s) G33(rss) || T,(s)

in which R is the radius of the cylinder and ur(r,3)=Ur(r)cosSeiwt:
ug(r,9)=Ug(r)sinsei®t; uz(r,$)=Us(r)cossel®t; 1. (r,8 )=Ty (r)cosdelt;
Tglr,;$)=Ty(r)sindeiwt; 1,(r,$)=T,(r)cospeiwt,

No approximation has been made such as introduction of the
39lutions for the cases of relaxed contact conditions; Eq.(1) holds
rigorously so long as no separation occurs at the surface of
contact. The integral kernels [Gi;] are defined as a sum of a
generalized elliptic integral and a definite integral over a finite
interval of an analytic function.

If the cylindgr is rigid and oscillates in a coupled manner of
%aiiral and rocking motions, the displacement is expressed as
ollows:

Ur=x-¢H, Ug=-x+pH, and U,=-r¢ (2)

in which X 1s the amplitude of lateral motion and ¢ that of
rotational angle, while H is the height of the center of gravity.

?gbstituting' Eq:(2) into Egq.(1), one can express ( Ty , Ty » Ty ) as a
inear combination of x and ¢, in which the coefficients are
functions of r and §. By integrating these functions over the

surface of contact, one can calculate the resultant force X and
moment & of the stress of contact in the following form:

X k11 kpof[x

- (3)
®| |kay kazflo
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or, in a nondimensional form,

X El] EIZ X

Wl [ka1 Kap]|w
in which W=¢/R and w=Rg.

The reciprocal relation has been verified numerically that the
nondiagonal components k), and k,; are identical. Although the
method of Veletsos and Wei was an approximation based upon the
solutions for the relaxed conditions, their result agrees well with
the presented one, particularly if the nondimensional frequency is
less than about three. On the contrary, the value of the
nondiagonal components is largely different from that calculated by
Luco and Westmann.

RESPONSE TO INCIDENTAL WAVE

Let the mass of the cylinder be M and the moment of inertia be

I around the axis on which & is -7/2. Consider the case in which
sinusoidal transversal wave of amplitude A advances vertically
upwards and shakes the cylinder. In stationary situations,

reflective wave of the same amplitude exists and propagates away
vertically downwards. Substituting this stationary condition and
Eq.(4) into the equation of motion of the cylinder, one obtains the
following equation which determines the amplitudes x and w against
the frequency of the incidental wave:
S N IETS (5)
kjp-H-kj

i]l—wzﬁ EZ]_E'EII ‘”x
in which M=mass; I=moment of inertia; R=radius; H=height of the

E21~H'_1-<11 Ezz—Zﬁ-Elzﬂ?EH-—wzf w
center of gravity ; M =M/(UR ); I =I/(uR ); H =H/R.

Solutions are obtainable in the following form:

x = F1(w,Vg,V3;M,I,H,R)(24) (6)

w = Fo(w,Vs,V;M,I,H,R)(24A) (7)

Because (2A) 1is equal to the amplitude of lateral motion of the

surface of the elastic medium when no body exists, the response
functions F; and Fjare identifiable with dynamic amplification
factors. These are complex-valued, analytic for every finite

frequency and integrable over the whole frequency axis.

If sinusoidal excitation of amplitude P is applied laterally to
the <cylinder, the equation of motion of the cylinder is a little
modified: the terms on the left hand side remain unaltered while the

terms on the right hand side are changed. Predominant vibrations
arise at the frequencies where the determinant of the matrix of
Eq.(5) becomes small. Since the matrix is the same for both

problems, the predominant frequencies are approximately identical.
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NUMERICAL EXAMINATIONS

We now apply the presented formula to an actual structure. We
choose as a sample South Bisan-seto suspension bridge of Japan.
Ambient vibrations of an anchorage of this bridge have been measured
and its predominant vibrations identified and investigated in detail
{Ref.4). Since the cross-section of its bottom is a rounded
rectangle, we consider a disk of the same area. Its mechanical
properti?s are as follows: mass M=1.1x10°[ton]; moment of inertia
I=1.4%x10°[ton m?]; equivalent radius R=37.5[m] and height of center
of gravity H=49[m]. Virtual mass effect of the sea water has been
considered here. Mechanical properties of the ground have been
measured by several means and all data indicated the same number 1/3
for Poisson’s ratio. Serious controversy existed on Young’s
modulus, or equivalently, on the velocity of elastic waves. We
employ here 1300[m/sec] as the latter, which is consistent to the
result of incident vibration test. Mass density of the ground is
assumed 2[ton/m?].

Fig.1l shows the absolute value of response. The light and the
heavy curves correspond to translation and rotation, respectively.
The dotted curve shows the response of decoupled translation to the
same incidental wave. This decoupled mode has relatively high
damping ability. If coupling occurs, however, frequency and damping
ability might decrease exceedingly. Understanding of this manner is
most primitive but important for earthquake resistant design of the
structure.
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Among the existing parameters, the height of the center of
gravity primarily governs the coupling effect. Even if the height
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is =zero, coupling occurs in the sense that lateral motion of the
structure accompanies rocking motion on account of the interaction
at the surface of contact. The lateral motion experiences, however,
no amplification 1in this case. As the height of the structure
increases, the predominant mode exhibits resonant characteristics.
On the other hand, if the structure is sufficiently tall, the second
peaks of the response functions are so flat that they are hardly
detected from the vibration data; the structure appears as if a one-
degree-of-freedom system. This conclusion is consistent with our
experience that no second predominant vibration was identifiable in
the measured data (Ref.4).

Predominant Frequency The ambient vibration test tells that the

predominant frequency of our model is 1.85[Hz]. If Poisson’s ratio
of the ground on which no controversy exists among the estimated
data 1is assumed known, this value determines another -elastic
constant, Young’s modulus. Fig.2 shows the relation between Young's
modulus and the predominant frequency derived from the present
formula. The figure also shows the cases in which one of the
parameters increases by twenty per cent. Parameters indicating the
dimension of the structure, radius and height, have greatest
influence, while accuracy of these data is very high. On the
contrary, the mass density of the ground possibly has an
unnegligible error but its effect is very small. Although the mass
and the moment of inertia of the structure unavoidably has
uncertainty because of the action of the sea water, their effect is
insignificant. Consequently, Young's modulus and the velocity of
transversal elastic wave are evaluated with good accuracy as 9.5x10°
[kN/m?2 ] and 1300(m/sec], respectively. These are consistent with
the result obtained from the in situ measurement of the wave
velocity of the ground.

Damping Factor As to the predominant frequency, the conventional

two-degree-of-freedom model is able to estimate it, provided that
reasonable data of the resistant force of the ground 1is afforded.
The amplification factor and the damping constant of vibration are
not evaluated, however, without the presented formula. We already
observed that the so-called second mode of such a tall structure as
our sample 1is negligible while the first one 1is considerably
excited. This situation is gquite different from that of the
decoupled modes. According to Fig.l, the decoupled lateral and
rocking modes have damping coefficients of 0.20 and 0.03,
respectively, while those of the coupled mode are both 0.03.

Damping ability is most conveniently observable in a time

domain analysis. Applying inverse Fourier transform to Egs.(6) and
(7), one obtains the response functions G| and Gy in time domain
such that

x(t) = G1(t-Vs/R,v,p;M,I,H,R){24(t)} (8)

w(t) = Go(t-Vs/R,v,p;M,I,H,R){2Aa(¢c)} (9)
in which 2A(t) 1is the time history of the amplitude of lateral
motion of the ground surface induced by the incidental wave. The
curves 1in Fig.3 correspond to the same conditions as those of
Fig.l. They exhibit simple damping vibration after a short
transient stage. The damping coefficients defined by means of this

free vibration are 0.03, being coincident with the result of the
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analysis in the frequency domain.
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CONCLUSIONS

Coupled lateral and rocking motion plays the primary role in
the response of tall structures to earthquakes. This motion is
completely different from each decoupled motion; particularly, the
frequency and the damping coefficient of the predominant vibration
are considerably small. In this paper, the dynamic compliance of
the ground against the coupled mode is determined accurately by
using for the first time a rigorous formulation of the interaction
between the ground and the structure in the coupled mode. Response
of c¢ylindrical structure against vertically ascending incidental
wave 1is calculated both in frequency domain and time domain. Two
characteristic parameters, the fregquency and the damping
coefficient, of the predominant vibration are evaluated. The result
is consistent with that derived from the measured vibration of an
actual structure for appropriately prescribed conditions.
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