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SUMMARY

In order to simulate ground motions under arbitrary stress condition
including the principal stress rotation, the authors incorporate a proper
constitutive equation into dynamic analyses using two-dimensional effective
stress method. A parameter for the stress reversal is proposed to distinguish
the reversal shearing from the monotonous shearing. This parameter is introduced
to the Matsuoka's constitutive model (1986) that can evaluate the yielding due
to the principal stress rotation. The accuracy of the present method is
discussed by comparing its numerical results with those by the simple shear
test. Furthermore this method is applied to the liguefaction analysis of the
irregular ground considering the soil-structure interaction.

INTRODUCTION

Recently, many important structures have been constructed on soft irregular
grounds. During a major earthquake, the irregular grounds or the surrounding
grounds near the structures are considered to shake under cyclic loading with
the arbitrary stress path including the principal stress rotation. Therefore,
it is important to develop the earthquake response analysis for two-dimensional
liquefaction problems. One of the authors proposed the liquefaction analysis
method including the soil-structure interaction based on an implicit-explicit
finite element method (Ref. 1). 1In this paper, the formulation of the
constitutive equation is presented and the liquefaction analysis is performed to
investigate the mechanism of non-linear behavior and liquefaction for soft
irregular grounds.

CONSTITUTIVE EQUATION OF SOIL

Soil elements in the ground are subject to repeated loading along the
arbitrary stress path including the principal stress rotation caused by
irregularity of the ground and existence of structures. The existing
constitutive relations based on the theory of plasticity however, are mostly
formulated as a function of the stress invariants. Therefore, the relationship
between the general stresses (o;, 0y, T;) and stress invariants (¢me, To:z €tc.) is
not clear, and the stress-strain-dilatancy relationship of soil under an
arbitrary stress condition including the principal stress rotation can not be
formulated precisely. Hence the constitutive model is proposed as an extension
of the Matsuoka's model.
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Matsuoka's model  Matsuoka proposed the constitutive equation of soil which can
evaluate the yielding due to the principal stress rotation (Ref. 2). This
Matsuoka's model is derived from the hyperbolic relationship between the general
shear-normal stress ratio (vs/o; or ty/0,) and the general shear strain (rs), and
from the "stress-dilatancy relationship” ezpressed in the general coordinate.
The three stress parameters used in this model are shown in Fig. 1 and Eq. (1).

o.~0, 2
< 2 }>+I:y 1 2t 1
o =tn"! ———— u=—tan_1(—-——x1—-> , o =—<o +0) (N
mo 6 g -7 2 a_—0 L ANE I ¢
x "y =xy x ¥

These parameters, ¢m,e, a and o, are related to "shearing", "rotation of
principal stress axes" and "consolidation", respectively. This constitutive
model is able to evaluate yieldings due to "shearing", "principal stress
rotation", "isotropic consclidation" and "anisotropic consolidation." Total
strain increment can be expressed by a summation form of those components. The
stress-strain parameters used for the Matsuoka's model are shown in table 1. ¢
denotes the internal frietion angle in terms of the effective stress C, the
compression index, C; the swell index, ¢y the initial void ratio. A and p are
the parameters for the strain increment ratio and ksyy for the magnitude of
strain.

Stress reversal parameter The relationship between the general stresses (o,
Oy, Txy)} and stress invariants (¢m., Te €tc ) are not clearly related each other
in repeated shearing. As shown in Fig. 2, the Mohr's stress circle moves in the
same way for the two different effective stress path a~b-c and a-b-d expressed
by general stress. Thus the constitutive equation formulated only by stress
invariants can not distinguish the reversal shearing from the monotonous
shearing where the shearing direction does not change. In order to solve this
preblem, the parameter for the stress reversal, 3(B.+B,), shown in Fig. 3 is
introduced in the constitutive equation (Ref. 3). The stress reversal
parameter is defined only by the general stress. B, and B, are the angles at the
folded points on the general effective stress paths (o, VS. 13y and o, VS. Tp).

It is considered that the smaller the value of 3(B.+By) is, the more the soil
particles move reverse direction. Thus, we can judge the shearing direction by
Egs. (2) and (3) when the stress ratio reverses. The condition for the reversal
shearing is expressed as follows:

B0 g @)

stress ratio increment < 0 or

Also the condition of monotonous shearing is expressed as follows:

B.+B

stress ratio increment > 0 and I2 2 > gp° (3)

Based on the above mentioned rule, we can easily judge the shearing direction in
Fig. 2. It is concluded that the relationship between path a-b and path b-c is

the reversal shearing and the relationship between path a-b and path b-d is the

monotonous shearing.

The Stress reversal parameter is incorporated into the Matsuoka's mcdel and
we extended the Matsuoka's model to the arbitrary stress condition. In such a
case, ¢,, is considered as the stress ratio. The proposed stress reversal
parameter enables us to apply the constitutive equations formulated by the
stress invariants to the arbitrary stress condition. The stress reversal
parameter can be introduced to any other constitutive equations as well as the
Matsuoka's model. Based on the rule above mentioned, we can calculate the soil
behavior regardless of its stress condition.
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SIMULATION OF SIMPLE SHEAR TEST

Simulation of a simple shear test is carried out to demonstrate the
accuracy of the present constitutive model. The K, value of 0.5 and 1.0 are
adopted as an example. Note that o,, o and o, indicate the effective mean
stress, effective vertical stress and effective horizontal stress, respectively.
Figures 4 and 5 show the comparison between the calculated and the measured
results of an undrained simple shear test. A Japanese standard sand called
Toyoura sand is used as a test material with relative density Dy=70%. The
calculated values are obtained under the condition of no vertical strain
increment and no volumetric strain increment. The calculated results for Ky3=0.5
coincide well with those by the experiment, and the cyeclic mobility and hard-
spring-type hysteresis loop can be represented. Figure 6 shows the calculated
effective stress path in the stress-deviation field {1 vs. %(0;—0a,)}. It is
recognized that the K, value changed gradually from 0.5 to 1.0, and the effect
of the principal stress rotation is seen especially in the initial stage.

Figure 7 demonstrates the calculated results along with the measured ones by the
relationship between the stress ratio (t/or Or t./o,) and the number of cycles
to cause liquefaction (DA=4%). It is pointed out from the calculated results
that the larger the K, value is, the higher the liquefaction potential becomes
if the stress ratio Tyy/0xo 1s adopted. However, the stress ratio t;/0m, is almost
the same irrespective of the Kq value. This tendency is also pointed out by
Ishihara et al. (Ref. 4) from the expériment and Nishi et al. (Ref. 5) from the
calculation.

The stress-strain parameters used for these calculations are determined
from a conventional triaxial test and an oedometer test (Ref. 2) and those
values are shown in table 1. The experimental results are performed by Matsuoka
et al (Ref. 3).

LIQUEFACTION ANALYSIS INCLUDING SOIL-STRUCTURE INTERACTION

The present effective stress method based on an implicit-explicit finite
element method is proposed in the author's recent paper (Ref. 1). In the hybrid
method, the internal force of pore fluid is considered in the equation of motion
for granular solid in order to satisfy the undrained condition. The dissipation
of excess pore water pressure is not considered. The excess pore water pressure
under the undrained condition is obtained from the condition of no volumetric
strain increment.

The present method is applied to examine the two-dimensional liquefaction
problem including soil-structure interaction. Figure 8 shows a model of an
embedded structure used for analysis. The backfill consists of Toyoura sand
above mentioned and Matsuoka's model is employed under undrained condition. The
stress-strain parameters in the backfill are shown in Table 1 and they are the
same as those used in the simple shear simulation, The unit weight of the
backfill, basement rock and structure are 1.8tf/m3, 2.0tf/m3 and 1.Otf/m3,
respectively. The shear wave velocity of the basement rock and structure are
500m/s and 1200m/s, respectively. The absorbing boundary (Ref. 6) is used for
the lateral boundary and the Lysmer damper(Ref. 7) is applied to the bottom
boundary. El-Centro earthquake with maximum velocity of 20 kine is considered
as an incident motion to the bottom boundary through the Lysmer damper.

Figures 9, 10 and 11 show the calculated time histories of acceleration,
shear stress and shear strain in the backfill. It is recognized that the
amplitudes of the shear stress gradually decrease after 5sec because of
liquefaction, on the other hand the shear strain become large especially in
element S1. The acceleration of the backfill surface (A2 and A4) becomes large,
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but after 6 sec decrease due to liquefaction. It is also found that the
acceleration amplitude in the backfill after 5sec does not decrease compared
Wwith the shear stress amplitude. This fact can be explained that the
longitudinal wave is produced by the shearing of the structure and the wave
propagates horizontally in the water. But the shear wave is not transmitted
vertically from the base due to liquefaction. Figure 12 shows the hysteresis
loop and effective stress paths at element St. The principal stress rotation
and vertical motion are observed at the element S$1 in its stress path shown in
the stress-deviation field. The effect of the principal stress rotation is
about 10 to 20% from the viewpoint of the cumulative shear strain. Figure 13
shows the distribution of the maximum shear strain in the backfill, and it is
recognized that the shear strain is large at the surface of the backfill due to
liquefaction.

CONCLUSIONS

The stress reversal parameter, 4(B,+B,), is proposed to distinguish the
reversal shearing from the monotonous shearing, and the proposed parameter is
incorporated into the Matsuoka's model. First, the accuracy of the present
method is discussed through the comparison of simulated and experimental results
for the simple shear test under variaus K, conditions. The numerical results
are in good agreement with those by the experiments, and the cyclic mobility and
hard-spring-type hysteresis loop can be represented. Secondly, the authors
performed liquefaction analysis inecluding the embedded rigid structure. It is
recognized that the present constitutive model can well represent the response
of the irregular ground and the liquefaction. It is also found from the two-
dimensional liquefaction analysis that the influence of the prinecipal stress
rotation is not neglected.

Consequently, it is concluded that the present method can well simulate the
non-linear behavior of the irregular soft ground and soil-structure interaction
under arbitrary.stress paths. However the results obtained from the analysis
are limited. A further investigation based on the earthquake observation and
theoretical study may be required.
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Table1l Parameters for Toyoura sand (D,=~70%)

C C
¢ A n ks1st . £
1+eg 1+eg
40° | 1.2 | 0.2 | 0.0023 | 0.009 0.006
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