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SUMMARY

Based on the limit equilibrium principle and the variational technique, an
efficient method for estimating the 1limit earthquake-resistant capacity of
layered soil slopes is presented.Both non-homogeneity of seil properties and non—
uniform distribution of seismic loads are considered. The concept of stability
envelope is introduced for assessing the overall capacity of soil slopes
subjected simultaneously to horizontal and vertical seismic loads. Abundant
numerical results show the effects of factors associated with soil properties,
slope geometry, and seismic loads on the yield seismic coefficient. Finally, a
composite procedure for evaluating dynamic stability of non~homogeneous slopes is
briefly proposed.

INTRODUCTION

Shortcomings of the conventional pseudo-static apalyses on stability of
slopes under seismic loading has been well known to all. Newmark (Ref. 1) first
proposed the important concept that the seismic stability of slopes should be
evaluated in terms of the potential displacements rather than the traditional
minimum factor of safety, and developed a rigid-plastic sliding block model for
predicting slope movements caused by seismic loading. Afterwards, several authors
have made improvements to extend its practical application. The procedure
includes two main steps, i.e., evaluation of critical limit states and prediction
of displacements due to overloading.

Usually, the critical acceleration under which the slippage of the
anticipated sliding mass can be initiated is called the yield acceleration a, ,
which is often represented by the product of yield seismic coefficient ky and the
gravity acceleration g. Limit equilibrium principle and the upper bound theorem
of limit analysis have been used to estimate the values of ky for slopes with
different failure mechanism such as plane and logarithmic spiral rupture surfaces
(Refs. 2,3). The problem was studied experimentally too (Ref. 4).

It should be noted that only homogeneous soil slopes were investigated in
the past. In fact, for practical slopes both the soil properties and the seismic
loads are usually non—uniformly distributed with depth. These non—homogeneities
may considerably affect the computational results. For this sake, they should be
taken into account.

To solve the problem, the 1limit equilibrium principle is utilized
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accompanied by the wvariational technique. Several relevant parameters are
optimized through the extreme value condition of the functional constructed for
the problem. This gives up elaborate computation efforts on the conventional
trial and error process so that systemetic parameter studies are achieved.

FUNDAMENTALS OF THE METHOD

Basic Assumptions The slope consists of layered non-homegeneous but isotropic
soil deposits, and each layer is designated with unit weight ¥;, cohesion ¢; and
friction angle ¢; . The effect of earthquake shaking is replaced by non-uniformly
distributed pseudo-static loads. The magnitude of the load is represented by the
product of seismic coefficient k and weight of the sliding mass, and the
direction of application is supposed to make an angle of &swith the horizontal.
The slope is considered to have a sectional plane profile. A sketchy representa-—
tion of profile characteristics and load distributions is shown in Fig.l.

For convenience, the following illustrations and computations will place
emphasis upon typical two-layered slopes with o, , o, and ol being zero, and no
other forces but the soil weight and seismic loads are exerted on the slope.

Illustrations of Mathematical Formulation According to the 1limit equilibrium
principle, three equations of equilibrium for the potential sliding mass are to
be formulated. The relationship between normal stress o and shear stress © along
the possible slip surface is considered to obey Coulomb’s criterion

Z(x) = ¢ +o(x) tan @ (1)

For simplification, it is postulated that both soil cohesion ¢ and seismic
coefficient k are linear functions of depth. Therefore,

c=cTcptmyVly—vyv:), ¢P=%, k= k= ke {1 ~ my; (y-y,; )/HI;
for y,_,<v < vy, , i=1, 2 (2)

where ¢, , m, , My are designated parameters; k,,is a parameter to be determined
by the optimization method, and its extreme value is called the datum value of
the yield seismic coefficient under a given mode of acceleration distribution; H
stands for the height of slope. All other symbols are shown in Fig.l.

For convenience of illustration and analysis, the following non-dimensional
parameters and variables are introduced,

X = X/H’ —3—' = Y/Ha ?;= y;/H, D= D/Hi —C_z'o: Cio/YHa ll/i:t“q’i’ f::y‘/){ (3)

in which Y is the unit weight used for normalization, i=1,2. Along with all the
expressions given above, it can readily be proven that the three equilibrium
equations will take the form of

-X—B 7{
Tl: =LFL'I(§: 375 3’” a: ) di—+zFiz(?’ ¥, 37,’ 5’) dax = Oa i:li 2: 37 (4>
A B

where Fi; , i=1, 2, 3 end j=1, 2, are functions of X, ¥, ¥',0 . They all vary with
the parameters related to slope geometry, soil properties and load distribution.
The explicit expressions will not herewith be labelled owing to limited space.

Without any difficulty, the preceding issue is to be reduced to a non-linear
mathematical programming problem, namely,
Min. kp(;s 3’; ?’,C—T > ?A’ —isﬁ ig; —}Eps ;(—c)
(8)
S.t. T;=0, i=l, 2, 3
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It is obvious that under a given value of my; and k, /kw, ki is an implicit
functional of ¥(X), 9’(X) andc (X). In order to overcome the mathematical
difficulty manifested in directly solving this problem, the following composite
functional is constructed by employing Lagrange’s multiplier procedure and the
variational technique,

= 8§, dx +Aszm (6)

where
S}'= Fl} + >\, Faj. + AzFi,‘: 3 j=1, 2 (7)

in which A\, , A. are Lagrange’s multipliers to be determined. The use of the
condition M= 0, combined with all related geometric boundary conditions, leads
tc the corresponding boundary-value issue. Euler’s differential equations,
integral conditions, transversity , refraction and geometric boundary conditions
are outlined as following,

o8 /65= 0; 28 /27 — d(3S:/2¥’)/d% = 0, i=1,2 (8)
Min [1= 0; an/a)\{, =0, 1=1,2 (9)
[$i- (7% ) 25, /09|, = 0i (@Su/oY’~e8/07")|er = 0,
x=Xa (only for the case 55 ®g> 0);
[[Sa= (37-9) ) 25./5%] - [Si- (F-F; )as,/av’]}l_ =0 (10)
X=Xy
(an/aY’ - 952-/3?’ )17 - =0
=%,

% = Xptanc,, ¥,= T, (%), ¥e= 1, ¥c=1/tang, =0, %= D/tang  (11)

These equations can be solved by performing a coordinate transformation, i.e.,
X=Ycosb+X., y=Tsin0+ 7y, , where (r,9 ) is the polar coordinate of the
point (x,y) under consideration, T = r/H; %.= l/A., ¥.= M /A2. Consequently, the
critical slip surface and its stress distribution mode can be obtained from
equations (8). Furthermore, the solution of equations (9)-(1l1l) yields nine non—
linear implicit equations concerning the unknown parameters §, , 65, 6> B 6>
FA:kzoairandYr’ .

WJ‘(GA, Ogsr Oes Ops Oc>s Ty, Ko, X, ¥r) = 0, J=1, 2, ..., 9 (12)

which simultaneously constitute the basic formulas to define the critical state
of the slope. Details can be found in the authors’ companion paper (Ref. 5).

Computational Approach A discrete Brown’s algorithm, as an extended form of
Newton’s numerical approach,is employed to solve the nonlinear equation set (12).
In this method, an iteration scheme is utilized which combines successive
elimination of variables with a series of recursions, following a consecutive
linearization procedure for each equation. A computer program adapted to micro—
computers has been developed for performing enormous calculations.

RESULTS WITH DISCUSSIONS

Results 1. Failure mechanism. By solving Euler’s equations (8), it can be
directly proven that the most likely failure mechanism for layered c —-¢-Y soil
slope with non-homogeneity of cohesion is deep-seated sliding in concordance with
a sectional logarithmic spiral surface. In addition, numerical results show that
both the yield seismic coefficient and the actual shape of the rupture surface
not only depend on the average soil strength and on the geometric characteristics,
but also are intimately related to the variation of soil properties and seismic
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loads with depth. As an example, Fig. 2 (a)~(d) portray the limit states of
layered slopes with different ratio of D/H = 0, 0.4, 0.8, 1.0 respectively, where
D denotes the upper layer thickness.

2. Effect of variation mode and direction of seismic load on ky . Fig. 3
portrays the somewhat outstanding effect of variation mode of seismic load with
depth on k,, where k, denotes the average yield seismic coefficient weighted by
the layer thickness. For practical computation, k, should be weighted according
to the sliding mass along depth.

In Fig. 4 shown 1is the stability envelope of soil slope subjected to
horizontal and vertical seismic loads simultaneocusly. The horizontal and vertical
components of yield seismic coefficient k, constitute an outward convex envelope
in the limit load space. It is seen that for practical slope angles the
reduction of horizontal earthquake-resistant capacity due to wupward vertical
seismic load with ky less than 2k, /3 may be up to 20% . And it must be pointed
out that for definite combinations of 8 , ¢ and kv/k,, vertical seismic load may
eccentrically effect the value of limit horizontal seismic coefficient ky, .

3. Effect of soil cohesion and its variatioms on ky . Fig. 5 indicates the
increase of k, with ¢. It is worth noting that soil cohesion has considerable
effect on the stability of slopes, but conventionally this effect is ignored.
Furthermore, the effect of variation of soil cohesion with depth on k is also
practically significant. It is observed from Fig. 6(a) that k, is nearly directly
proportional to m. , where m, denotes gradient of cochesion as defined in eq. (2).
Fig. 6(b) shows that kyis closely related to the ratio of cohesion of upper and
lower layers. Fig. 7 gives a series of stability envelopes for a specific slope
with different layeredly distributed cohesion.

4. Effect of layered variation of ¢ on k,. It can be seen from Figs. 8, 9,
10(a), (b) that increase of average friction angle makes not only k, increase for
the case of«s= 0, but also the corresponding stability envelopes expand outwards.
It is worth noting that layered distribution of ¢ has substantial influence on
limit capacity of the slope. As an example, in Table 1 shown is the computational
results for a slope composed of two layers with equal depth. Although the mean
¢=D@+(1-D) @ is identical for all cases, differences of ky can fall in 50-75% .

Table 1 Effect of Variation of ¢ on ky or ky

% L8, %) 8 = 30° 6 = 45°
S % =0° o = 20° %= 0° % = 30°
M| #=230°, &= 20° 0.230 0.319(0.300)[  0.180  [0.197(0.171)
(2)| ¢=20°, &= 30° 0.454 0.505(0.474)|  0.315  |0.344(0.298)
(3) (2)/1) 1.516 1.580 1.662 1.744

Discussions 1. It is not difficult to show that the solution of equation set
(12) not only satisfies all equilibrium equations for the sliding mass, but also
fulfills the condition that makes external work rate of a specific virtual
velocity field equal to dissipation rate of the corresponding internal energy.
Hence, this solution can be regarded as a certain minimum upper bound for the
real solution.

2. By comparing the computational results with the test data from model sand
slopes on a shaking table conducted in Tokyo University (Ref. 6) as shown in
Fig. 11, in which n =1/tang , the validity of the suggested solution is verified.
The influence of cohesion on ultimate capacity of slope is revealed in Fig. 11.

3. The stability envelope diagram, as shown in Fig.4,is employed effectively

to determine the state of the slope: stable state, or critical state, or over—
loading state at a given instant during earthquake, according to the locatiom the

1-160



seismic load point falls in the diagram: inside of, or just on, or outside of the
envelope respectively. In the case of overloading, Newmark type analysis for
evaluating the possible displacement during a specific earthquake (Ref. 5) can be
applied. The authors have worked on a composite method which combines the
determination of critical state of soil slope by the stability envelope with the
assessment of movements under overloading. Details are to be provided in the
continuation of this paper.

CONCLUSIONS

From the theoretical and numerical analyses, it has been concluded that non-
homogeneities, either in soil properties or in distribution of seismic loads with
depth have notable influence on yield acceleration and critical state of soil
slopes. Ewmphasis should be placed upon the effect of so0il cohesion and the
vertical component of seismic loads on earthquake-resistant capacity of the
slopes, and they are usually ignored in most studies.

The method for estimating yield seismic coefficient of soil slopes presented
here can be successfully extended to more sophisticated cases such as embankment
dams with clay core and anisotropic soil slopes.
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Fig. 1 Typical Profile of the Slopes fig. 2 Lim}t States of Layered Slopes
(¢=20", #=30°, ﬁ=30°’ C,=C,=0.1)
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