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SUMMARY

The spatial and temporal variability of free-field earthquake ground
motion has been analysed with the aid of stochastic field model. The stochastic
model developed in this paper incorporates not only the effect of the
stochastic variation of the soil properties in space but also the effect of the
wave propagation in the horizontal direction. On the basis of the analytical
solution and a sample stochastic wave varying in space (x-direction) and time
obtained from the digital simulation method, it is found that the Kanai-Tajimi
spectrum of a specified point motion can be derived as a special case of the
power spectrum obtained in this paper. It is also found that the stochastic
spatial variability of soil properties in the horizontal direction
significantly affects the spatially inchoherency of ground motion.

INTRODUCTION

Considerable attention has been recently focused on the characterization
of the spatial variability as well as the temporal variability of earthquake
ground motions. In this context, several empirical studies have been performed
strictly from a statistical point of view (Refs.1,2,3,4). Meanwhile, it is
obviously desirable to develop analytical models which reflect the underlying
physics as much as possible. Such models may be used not only to interpret
seismic array data possibly in terms of wave content but also as an aid to
develop site-specific design parameters. In the present study, the spatial and
temporal variability of earthquake ground motin has been analysed with the
aid of the stochastic field model. The stochastic model developed in this
study incorporates not only the effect of the spatial variability of the soil
properties but also the effect of wave propagation in the horizontal direction.

STOCHASTIC GROUND RESPONSE MODEL WITH RANDOM SOIL PROPERTIES

Consider the ground layers with random soil properties resting on the
rigid bedrock and subjected to earthquake ground motion as shown in Fig.l. The
total soil depth is assumed to be a constant H. The input earthquake ground
motion at bedrock is assumed to be a stationary random wave propagating with
speed ¢ in the x-direction and represented by

1)

up (x, t) =up (b= %)
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The ground displacement at the location of x and z relative to the input motion
is denoted by ur(x,z,t) also shown in Fig.l. Then the total response
displacement u(x,z,t) can be expressed as

u(x, z, 1) =u, (t— &) +ur (x, z, ¥ (2)

By assuming that the shear deformation predominates in the ground layers, then
the equation of motion of ground layers is governed by

p(x, 2) = Bz [G(x, 2) 4= 1=-0(x, 2) i 3)

where © (x,z) and G(x,z) are, respectively, the soil mass and the shear modulus
of soil at location x and z. In this paper, it is assumed, for the first
approximation, that these soil properties are the random functions only of x:

o (x, 2)=p(2) [1+fp(x)], G(x, 2) =G (z) [1+fc(x)] (a4)

In Eq.4, the functions p(z) and G(z) are the deterministic functions of z, and
fo(x) and fc(x) represent the stochastic fluctuations of soil properties along
x-axis and have mean zero: E[fp(x)]=0 and E[fg(x)]=0. It is noted here that
the soil layers are "almost homogeneous" in the sense that E[fg(x)]<<1 and
E[fé(x)]<<1 in Eq.4.

By introducing the generalized displacement un(x,t) and assuming that

Ur (X, zZ, t) = nzi1 Un (X, t) wn (Z) (5)

with 9 (0)=1. 1In Eq.5, ¥y(z) is the shape function of the n-th mode or the
assumed n-th mode function satisfying the geometric boundary conditions. It is
usually convenient, although not essential, to normalize the shape function in
the sense of Eq.5. For the problem at hand, the geometric boundary conditions
are given such that

ur (x, z, t) =0 at z=H and —g——z——ur (x, z, 1) =0 at z=0
(6)

The shape function may be arbitrarily assumed, provided that it satisfies
the geometric boundary conditions. Obviously, however, it is more advantageous
to assume a shape function that approximates the actual deformation of the
ground under the specified earthquake motion at bedrock. In the present paper,
the shape function is assumed, for simplicity, as

Yo (z) =cos [ Lozl nz] -

The shape function in Eq.7 corresponds the n-th mode shape of a single
homogeneous infinite horizontal layer lying on rigid bedrock. Equation 7
satisfies the normalization and the geometric boundary conditions indicated by
Eq.6.

Recalling that the shape function satisfying the geometric boundary
conditions possesses the orthogonality such that, for msn,

H ) _
§, 0 (2) %o (2) ¥a (2) d2=0 )
§, G (z ) Gz, (2 ) 4. (2) dz=0

=
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and substituting Eq.5 into Eq.3, then multiplying it by the n-th mode shape
function, and then integrating it with respect to z from zero to H, one obtains

‘dn (X’ t) +2hn (X) Whn (X) ‘:ln (Xa t) + [wn (X)]zun (X’ t) =—ﬁnﬁb
9

In deriving Eq.9, the equivalent damping ratio h,(x) has been introduced to
account for, in approximation, the energy loss due , but not necessary
exclusively, to the hysteretic behavior of the soil under dynamic loadings. In
Eq.9, wp(x)= ground natural circular frequency of the n-th mode and g, =
participation factor of the n-th mode. They are given as,

H
[1+fc(2) ] oG (2) [+ s (2)12d2

wy (x) =
[1+fp (x> 5% o (2) 9.2(z)dz (10=2)
]

H
fop (2) ¥, (2) dz

" o (2) 2 (2) dz (10b)
8

By using the mode shape given by Eq.7 and assuming the soil mass is constant,
Eq.10b reduces to;

— n-1

Ba= n— e (10c)

Alternatively, the natural circular frequency and the equivalent damping ratio
may also be expressed formally as

wo (x) =0, [1+f (x)] h, (x) =h, [1+h (x)] (11)

where wy and hp are the means of wi(x) and hy(x), and f£(x) and h(x) are the
homogeneous stochastic fields with zero means.

SPATTAL AND TEMPORAL VARIABILITY OF WAVE FIELDS

Expanding the impulse response function of Eq.9 into a Taylor-series
around @n(x)= Wy and Db(x)=h;, neglecting the higher-order terms under the
assumption of smallness of hy, E[fXx)] and E[h2(x)], and assuming independence
among £(x), h(x) and up(t-x/c), one can obtain the cross-spectral density
function P,,; (&, w) between the absolute displacements u(x,z,t) and
u(x+¢,z,t+17) as follows (Ref.5);

Puz (£, ©) =Supu, (W) e [A (w) +Rer (£) B ()1 (2

where i={-1, Supus (W) 1is the power spectral density function of ub(t-x/c),
and R¢y; (&) 1is the auto-correlation function of £(x) in Eq.11l. The functions
A(w) and B(w) are given such that

1I-827



A ((;.)) =14+w2 L Bnthn (z) [Hn (w) +-H-n (w) ]

n=1

+wt [E Bata (2) Ha (W) ] IZE1 Bathn (2) Hy (w) 1 (132)
n=1 n=

B (0) =w! [T Bntbn (2) waHwn ()] [)Z_I1 Bnthn (2) W Hw, (W) 1]

n=1

(13b)
with, 1
Hn (w) = , Ho, (@) =— (2w,+i2h,0) He?2 (w)
(Wp2—w2) +i2hWa
(13c)

where H, (w) indicates complex conjugate of H, (w). It is noted here that
the Kanai-Tajimi spectrum of ground motion can be derived by -specifying the
parameters as c=infinity, n=l, R;; (&) =0 in Egs.l12 and 13. The other
important statistics, the coherence function 7.4, (&, w) and the power

spectral density function S,,, (x, w) , can be derived from the following
equations:

| Puyz (55 w) |
Tuwz (£, W) =
Puuz (0, w)
(14)
1 “ikg
Suuz (/'5’ &))=‘— .Y Puuz (E; b))e dg
2n -

And also, the wave form u(x,z,t) can be digitally simulated by (Ref.6)

M N
u(x, z, t) =1/2 EEL[Y2Su;: (61, ) dekdwcos (Kix+wet+dD)

i=tk=1

+~\/2Suuz (ki W) dedwcos (—k;x+wet+¢:,2)

fas)
Ky Wy
dr= y A= , Ki=idk , Wx=kdw
M N
where ky and w, are the upper values of k and v, and ¢ ;, ‘"’ , ¢;® are

independent random phases uniformly distributed between O and 27,
NUMERICAL EXAMPLE

Figures 2 and 3 show the coherence function Tuuz (£, ®W) and the power
spectral density function §,,, (x, w) of ground surface displacement
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u(x,t)=u(x,0,t) computed by using Egqs. 13 and 14 for the following values
of parameters:

Rer (§) =0¢® [1-2 (§)2exp[- (£21 , Sy, =1s (16

where Or¢ =5Z, b=141.42 (m), and . =3(2n-1) (rad/s), n=1-10, hl=25%,
h2-h10=6%, and ¢=1000 (m/s). In Fig.3, the peaks of power spectral density
function on the line of =ck corresponds to the wave propagation effect and the
smaller peaks on the other w-K plane are associated with the spatial
variability of soil properties in the x-direction., It is interesting to
observe from Fig.2 that the coherence function of u(x,t) tends to decay with
increasing separation and frequency with wavy form along the frequency axis as
usually observed in the statistical analyses of array data (Refs.l,2). It is a
characteristic of this model that the troughs of the wavy form of the
coherence function occur at the natural circular ground frequency. Figure &
shows a sample wave form of u(x,t) digitally simulated using Eq.15. It can be
seen from Fig.4 that the wave propagates in the x-direction with speed of 1000
(m/s) changing the wave form due to the randomness of soil properties in the
x-direction, indicating a similar trend of observations.

CONCLUSIONS

In order to characterize the spatial and temporal variability of ground
motions for the seismic analysis and design of spatially extended structures,
this paper presents a simple stochastic ground response model for a seismic
excitation in which the soil properties are random functions of the horizontal
coordinate. On the basis of the analytical solution and a digitally simulated
sample stochastic wave, it is found that the Kanai-Tajimi spectrum of ground
motion can be derived as a special case from the space-time power spectrum of
ground motion obtained in this paper. It is also found that the stochastic
variation of soil properties significantly affects the spatially incoherency of
the free-field ground motions.
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