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SUMMARY

In order to describe the nature of ground motion arising from a propagating seismic
wave, a stochastic wave model has been developed here and an efficient technique for digitally
generating samples of such a stochastic wave is introduced as an extension of the spectral
representation method. Although the stochastic wave model considered in this work is sta-
tionary and homogeneous, it is a straightforward task to extend the introduced methodology
to non-stationary and/or non-homogeneous stochastic waves characterized by an evolutionary
power spectrum.

INTRODUCTION

A number of stochastic models for simulation of seismic ground motion have been proposed
and successfully applied to a variety of structural problems arising from seismic events (Refs.
1-17). A common limitation of all these models is that ground motion is treated as a stochastic
process when its time variability is examined, or as a stochastic field when its spatial variability
is considered. In the former case, the space variables are frozen, while in the latter case,
time is frozen. In order to have the analysis reflect the nature of ground motion arising
from a propagating seismic wave, a stochastic wave model has been developed here and an
efficient technique for digitally generating samples of such a stochastic wave is introduced as
an extension of the spectral representation method primarily developed by Shinozuka and
his associates. The proposed model is useful for the seismic response analysis of such large-
scale structures extending over a wide spatial area as water transmission and gas distribution
systems and long-span bridges.

THEORY OF STATIONARY, HOMOGENEOUS STOCHASTIC WAVES

Consider the following stationary, spatially two-dimensional, homogeneous stochastic
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wave:
fo(z1, z2,t) = fo(z, 1) (1)

with mean value zero:

where £ = [z; 227 is the vector of the space variables, ¢ is the time variable and E|[-] denotes
the expectation. The autocorrelation function of fo(z,t) is defined as:

Ry, 1,(€,7) = E[fo(z,t) folz + £t + 7)) (3)

Since the stochastic wave is considered to be stationary and homogeneous, Ry, 1, (£,7) is
symmetric with respect to the separation distance vector £ = [£§; €3]7 and the time lag 7:

Ry, £, (é’ T) =R, (“é! "T) (4)

Assuming that the three-fold Fourier transform of Ry, s, (§,7) exists, the power spectral
density function of fo(z,t) is defined as:

Sty fo (&, w) = (2—;)-5 /_ . [ i /_ N Ry po(€,7) €78 =it g deodr (5)

and its inverse transform is given by:

o] o0 (o] ) .
Bnllr) = / / / Sy s [ w) €8 ™ dic; dicoduo (6)
—00 v —oo0 ¥ —o0

The preceding two equations represent the three-dimensional version of the Wiener-
Khintchine transform pair, where & = [k; k2|7 is the wave number vector, & o ¢ is the inner
product of g and ¢, and w is the frequency. Using Eq. 4, it can be shown that the power
spectral density function is real and symmetric and also non-negative:

Sfofo (-"i’ w) =58 fo (_5’-, _w) (7)
Sfofo(ﬁ,w) >0 (8)

SIMULATION OF STATIONARY, HOMOGENEOUS STOCHASTIC WAVES

Based on the above-mentioned properties of Sy, s, (k,w), the stationary, spatially two-
dimensional, homogeneous stochastic wave fo(z,t) can be simulated by a stochastic wave
f(z,t) in the following fashion: consider that the power spectral density function S fo fo (£ W)
of fo(z,t) is of insignificant magnitude outside the region defined by:

-k, <K< Ky, (9)

Wy Sw Wy (10)

where £, = [£1, K247 with &;, >0 (s = 1,2) and w, > 0. Denote the interval vector by:

T
T_ (Fv Ku Yu
[Aky Aky  Auw] _[ A N] (11)
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and then construct the simulated wave f(z,t) by the following series, as Ny, N2, N — oo
simultaneously:

Ny N2

N
Fat)=v2y, > 3 3 3 [2Snnleiks Lo kok, Ly - wi) AxiArzAw]Y?.

ky=1 ko=1 k=1 Iy=+1 I,==%1

- cos(kik, - T1 + 2 Kag, * T2 + Iy - wi 't+¢ﬁ§:’,k) (12)

where wiﬁfc‘; « are independent random phase angles uniformly distributed between 0 and 2,
and

Kik, = k1- Ak, k1 =1,2,...,N; (13)
Kok, = ks Ak2 , k2=1,2,...,No (14)
wp=k-Aw , k=1,2,...,N (15)

The simulated field f(z,t) is asymptotically Gaussian as Ny, N3, N — oo simultaneously,
due to the central limit theorem.

NUMERICAL EXAMPLE

For simplicity, consider a stationary, homogeneous and non-dispersive Rayleigh wave
in which case w/c = k = y/k? + k% with ¢ = phase velocity of Rayleigh wave. Then,
S, o (k1, K2, w) degenerates into Sy, 5, (£1, £2). The following form of the power spectral den-
sity function Sy, z, (%1, 2) is used in this numerical example:

0'2 bk 2 bok 2
Siofo (1, 2) = Gt b1+ ba -7 - exp [_ (_1_2_1) B ( p 2) (16)

The corresponding autocorrelation function is given by:

Ry g0 (€1, 62) =0}y - l:l -2 (%) 2} - exp [— (%>2 - (%) 2] (1)

The power spectrum shown in Eq. 16 is proposed by Harada and Shinozuka (Ref. 18)
and is based on a wave number analysis of data from the original accelerograms recorded on
January 29, 1981 (Event 5) by a SMART-1 seismograph array installed at Lotung, Taiwan.
The data used represent the horizontal component of the displacement time history in the
direction N13°W which is approximately the direction of the seismic source of this earthquake
relative to the location of the array. The following values are used for oy, b; and bz appearing
in Eqgs. 16 and 17:

Oyy=00124m ; by =1131m ; by=3012m (18)

The apparent lack of a frequency-wave number analysis in the estimation of the power
spectrum is taken care of by the following relationship mentioned above:

w=g(k1,K2) =c-/k? + K3 (19)
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in which the value of the phase velocity is set equal to:

¢ = 2,800 — (20)
seéec

These assumptions were made strictly for demonstration of the proposed digital simulation
procedure and do not imply that the data used indeed represent a Rayleigh wave.

The simulation of a stochastic wave having the properties described above is then per-
formed using the following expression:

N, N>

flz1,22,8) = V2 Z Z (2850 5o (K1kys K2ks) AK.IAM]I/Z-

k], =1 k2=1

. {COS[Mk, Ty + Kok, - To + g(K1k, K2k, ) -t + 502),,2] +

+ coslkik, * T1 — Kak, - T2 + g(K1k, , K2k, )+t + (‘D](c?_)kg]} (21)
where:
Kiu Kau
AK'I N1 ) K2 N2 ( )
Kik, =ky-Axy .: k;=1,2,...,N; (23)
/52k2=k2'AI€2 3 k2=1)21"':N2 (24)

The following values are used for Ny, No, K1y, Koyt
Ny =N, =64 (25)

0-3 ﬂ 03 rad

K1y =8.84-1 5 Koy =3.32-1 (26)

m

It is noted again that (,og),h and ng)kg are two sequences of independent random phase

angles uniformly distributed in the range (0,27).

The stochastic wave is now simulated, using Eq. 21, over a 10,000 m by 10,000 m area
at 12 equispaced time instants, 0.5 sec apart from each other. Two of these 12 simulations
are shown in Fig. 1. By studying all 12 simulations, a relatively rapid variation along the
z1-axis is clearly observed, compared to the variation along the z,-axis. Note that the z;-axis
represents the major axis of seismic wave propagation in Event 5. From the number of peaks
(4) along the =z;-axis, the apparent wave length along this axis is estimated to be around
2,500 m. Thus, the patterns observed in the simulations indicate a dominant wave with a
wave length of approximately 2,500 m propagating in the negative zj-axis direction. This is
considered to be an excellent realization of the actual ground motion.

CONCLUSIONS

A stochastic wave model has been developed together with a method of generating its
samples. A numerical example is presented for-the case of non-dispersive Rayleigh waves. More
general cases involving spatially three-dimensional seismic waves as observed on the ground
surface can be treated similarly. In these general cases, however, rather than making use of a
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wave number domain analysis as considered here, a frequency-wave number domain analysis
is necessary. Such a frequency-wave number analysis was performed by Abrahamson (Ref. 19)
using data from the SMART-1 seismograph array installed at Lotung, Taiwan, considering the
wave field to be stationary in certain time windows.

Although the stochastic wave model considered in this work is stationary and homoge-

neous, it is a straightforward task to extend the introduced methodology to non-stationary
and/or non-homogeneous stochastic waves characterized by an evolutionary power spectrum.
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Fig. 1 Simulated Stochastic Wave at Two Time Instants.
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