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SUMMARY

An effective procedure for the nonstationary cross spectrum of multivariate
earthquake motions is formulated with the aid of multifilter technique.
Nonstationary coherency is calculated using nonstationary cross and power spectra
of the array data from SMART-1 in Taiwan. Subsequently, a coherency model is
developed on the basis of an equivalent time-invariant coherency. In order to
examine the validity of present model, multivariate earthquake motions are simu-
lated by means of models of coherency and nonstationary power spectra. It has
been shown by comparison with recorded data that present procedure and models
are useful for an engineering purpose.

INTRODUCTION

Consideration of the spatial and the temporal variation of earthquake motions
is important in the aseismic design of structures with large foundations such as
dams and nuclear power plants and extended structures such as long span bridges
and lifeline systems, because the earthquake motions are multivariate and multi-
dimensional. Moreover, nonstationary characteristics of earthquake motions
should be considered in the response analysis of previously mentioned important
structures, especially in their inelastic responses. In such cases, an effective
technique is needed for evaluating the nonstationary cross spectrum of multi-
variate and multidimensional earthquake motions. In previous studies for the
analysis of the cross correlation of multivariate earthquake motions ([Ref.1-3],
the stationary random process theory has been used, without considering the non-
stationarity of spectrum of earthquake motions.

The objective of this study is to formulate nonstationary cross spectrum with
the aid of multifilter technique and to develop an engineering model for evalua-
ting nonstationary cross correlation of multivariate earthquake motions.

NONSTATIONARY CROSS SPECTRUM BY MULTIFILTER TECHNIQUE

The concept of nonstationary power spectrum by multifilter technique
[Ref.4) is extended to formulate a procedure for analyzing nonstationary cross
spectrum of multivariate earthquake motions. Single degree-of-freedom linear
oscillators are used as multifilter components. The equations of motion when
subjected to random accelerations X;(t) and Xx(t), respectively, are given as

¥ (8)+2Bwe¥; (1) +adY; (£)=-X;(t)
Yie (1) +2Buwo¥ic (t) +0dYi (£) ==Xk (t)
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in which f=damping factor, w,=natural circular frequency and Y;(t),Yx(t)=random
relative displacement responses of the oscillator subjected to X;(t) and Xk(1),
respectively. Using a stationary random vibration theory (Ref.5), cross spectrum
of Y;(t) and Yk(t) is related to that of X;(t) and Xx(t) as follows

Sy (@)= H(w) %Sk (w) @)

in which Syy (w)=two sided cross spectrum of Y;(1) and Yi(1), Sj(w)=two sided
cross spectrum of X;(t) and Xx(t), and H(w)= frequency response function of a
single degree-of -freedom linear oscillator.

H(w)=(wi-0’+12Bwow) ™! 3)
Inverse Fourier transformation of Eq.2 leads to the cross correlation function
of Y;(t) and Yir(t) represented by

Ry (0= [ 1H@ BSik(@)e o 4)

Above discussion is based on stationary random vibration theory. If nonstationary
cross spectrum of X;(t) and Xi(t), Sjk(t,w), is slowly varying with time t, the
nonstationary cross correlation function is represented by

R (0= [ @) 285t wewd (5)
The complex-valued cross spectrum of Eq.5 can also be represented by
Sik(t,@)=Cir(t,0)+iQin(t,w) =] Sjk(t,0) [e®rt:e) ()

in which Cj(t,w)=co-spectrum, Q;x({,w)=quad-spectrum and 0 (t,w)=phase diffe-
rence between the w components of X;(1) and Xi(1).

05k (t, ) =tan”"Qjk(t,w) /Cik(t,w)] (7
Substituting 7=0 inl:o Eq.5 and considering that Ryy, (t,0)=E[Y;(1)Yx(1))
B (OYe(D1= [ 1H(@) 12856t 0)da @)

Noting that Cjx(l,w) is an even function, Q;x(t,w) an odd function of w and that
H(w) is of narrow band around the filter frequency w,, we have

EQY; ()Y (1) 1=+7C ik (T, 00) /203 (9)

Subsequently, differentiating Eq.5 respecting to 7 and using the same procedure
as Egs.8 and 9, following equations are deduced

Y5 (1) Yi (1) 1=+7Qjkc (£, o) /2Ba5 (10)

EOY5(E) Vi (1) 1=-mQj (£ o) /2Pl (11)

EOY ;5 (4) Yie(4)1=+7C ik (t 0o /2Bc0 (12)
From Egs.9 to 12, Cj(t,w,) and Qjk(t,w,) are given as follows

Cik(t,wo)=fud ELY;(1)Yk(E)+Y;()Y(t) /a8)/T (13)

Qik(t,w0)=pus ECY;(1)Yi(t) /wo=Y;(t)Vi(t) /wol/T (14)

Note that,in the case of j=k, Qjk(t,w.) is zero and S;k(t,w,) equals to Cjk(t,wo),
which is the nonstationary power spectrum [Ref.4]. When one sided nonstationary
cross spectrum Gjr(t,w,) is considered, it can be obtained from two times of two
sided cross spectrum as follows

G (t,00)=Cik (b, w0) +iQik (t ,wo) = |Gk (t , w) | @18k (E10) (15)
Cik(t,wo)=2Bws ECY;(£)Yk(t)+Y;(t)Vi(t)/wd)/n (16)
Qik(t,wo)=2Bw3 ECY;(t)Y(t) /we-Y; (1) Vi(t) /wo)/T an
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NONSTATIONARY COHERENCY AND ITS MODELING

Nonstationary Coherency Normarized cross correlation in the frequency domain
can be evaluated by coherency. The nonstationary coherency ﬁk(t,w) of X;(t)
and Xx(t) is defined by following equation

Y (t,w)=1Gp(t,w) [2/C;(t,0)Cr(t,w) (18)

in which Gj(t,w) and Gk(t,w) are the nonstationary power spectra of X;(i) and
Xi(t), respectively. In calculating the coherency, time lag between X;(t) and
Xe(t) must be modified in advance [Ref.l1], because, if not, the nonstationary
coherency may be underestimated.

In numerical analysis, accelerograms of event 5 recorded by SMART-1 array
in Taiwan(Fig.1) have been used. Fig.2 shows the nonstationary coherencies for
NS components of separation distance D=200m, 1000m and 2000m, that is, for
TOBNS-COONS, MOBNS-COONS, OOBNS-COONS. The frequencies in the figure have been
determined from peak frequencies of stationary cross spectra. It is found from
Fig.2 that the coherencies decay with increasing separation and frequency, and
that coherencies are large in the strong part of earthquake motions.

Modeling of Coherency The following weighted average coherency is proposed
to be used as an equivalent time-invariant coherency model to replace the non-
stationary coherency.

. T T
v,»fz<a>>=zfo Y?k(tvw)lgjk@,@)ldt]/[]; |Gyt ) ldt) (19)

The nonstationary cross spectrum amplitude has been used as a weighting function
in averaging over the time. The equivalent time-invariant coherencies are shown
by dashed lines in Fig.2. Fig.3 shows the equivalent time-invariant coherencies
of D=200m, 1000m and 2000m for NS components in epicentral (006-012 line) and
transverse(003-009 line) directions. It can be found from Fig.3 that equivalent
time-invariant coherencies in the epicentral direction are smaller than those in
transverse direction. The equivalent time-invariant coherency can be represented
by following model function.

¥,£@nf) =taDf*+1) %exp(-BX) (20)
in which a,q,f=constant,f=frequency,D=separation distance, and X=projection of D
to epicentral direction. FEq.20 has an advantage that it can be used in the
response analysis by random vibration theory, since it is rational function of
frequency. Parameters a,«,f3 have been determined using the array data recorded
in epicentral and transverse direction (on the lines of 006-012 and 003-008).
The following parameters have been determined in Eq.20.

a=0.00234; «=0.238; f=0.0000816

Fig.4 shows the model functions of equivalent time-invariant coherencies for
D=200m, 1000m and 2000m in the epicentral and transverse direction. The model
functions match the observed ones(Fig.3) very well.

MODELING AND SIMULATION OF MULTIVARIATE EARTHQUAKE MOTIONS

Model of Nonstationary Power Spectrum The following time-varying function is
adopted for the model of nonstationary power spectrum Gj(t,w) or Gk(t,w)( Ref.8 ]

A _J0 ; t=ts
NG ZRE) =g, () (it-ts(H 1/t () exp (-1t -t (DY E(D] 5 te<t @
in which ts(f), tp(f) = starting time and duration parameter, respectively, and
an(f)=intensity parameter which represents the peak value of Gj(t.2rf).

Model of Nonstationary Cross Spectrum Using S’jE(O)) and G;(t,0) in Egs.20 and
21 instead of ¥ (t,w),Gj(t,w) and Gi(t,w) in Eq.18, and then substituting them
into Eq.15, model of nonstationary cross spectrum can be obtained

G (t,0)=7k(w) /G (t,0)Ck(t,0) exp {ibjk(w)} (22)

11-797



in which @ﬂ(@) is the phase difference of w components of X;(t) and Xi(t) that
is determined from array data.

Simulation of Multivariate Earthquake Motions Multivariate earthquake motions
are simulated using the model functions in Egs.20 and 21, in a pairwise manner.

Spatially correlated earthquake motions can be simulated by following equations,
vhich are the extension of simulation of stationary random processes [Ref.9].

N

X;(t)=.4/26; (L o) Awcos (it +o;1) (23)
=
N

X’k(f‘)=2r\/26'k(f sanbw[Yik(wr)cos (@ t+0ik(w ) +oi1) +a/1-vik(w1) cos(wit+er)]  (24)
=1

In order to illustrate the validity of the proposed method and modeling, NS
components of the array data at sites in the epicentral direction (006-012) are
simulated in a pairwise manner, using Eqs.23 and 24. Fig.b5 shows the simulated
and recorded accelerograms. It is found from the figure that the simulated
accelerograms show the same intensity and nonstationarity as recorded ones. The
equivalent time-invariant coherencies of IOBNS-COONS, MOBNS-COONS and OO0BNS-COONS
are shown in Fig.8, where the equivalent time-invariant coherencies of simulated
and recorded accelerograms are compared with model function. Fig.8 shows that
the simulated accelerograms reproduce the spatial correlation of multivariate
earthquake motions.

CONCLUSIONS

Formulation and modeling of nonstationary cross spectrum have been investi-
gated with the aid of multifilter technique. The major results obtained in this
study can be summarized as follows.

(1)The multifilter technique has proved to be useful for the analysis of nonsta-
tionary cross spectrum of multivariate earthquake motions.

(2)It has been shown that nonstationary coherencies decay with increasing
separation distance and frequency, and that the coherencies are large in the
strong part of earthquake motions.

(8)The coherency has been modeled by equivalent time-invariant coherency, which
is the average coherency weighted by nonstationary cross spectrum amplitude.
The equivalent time-invariant coherency has been represented by the rational
function of frequency, which can be used theoretical response analysis by random
vibration theory.

(4)Multivariate earthquake motions have been simulated using present model func-
tions obtained from array data of SMART-1 in Taiwan. It has been shown that
simulated accelerograms reproduce the characteristics of nonstationary cross
correlation of recorded ones.
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