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Summary

An input stochastic model properly representing mutually correlated
earthquake ground motions is inevitably required in probabilistic response
analysis of large scale line-like or_network-like structures such as suspension
bridges and buried pipelines, Hoshiya™ proposed an effective method of obtaining
response covariances in a recursive form for a multiple-degree of freedom linear
structural system subjected to multiple support nonstationary seismic excitations.
But this method requires a pair of input ground acceleration and velocity at each
nodal point. This paper proposes a simulation method to obtain a pair of input
acceleration and velocity at each node.

Introduction

An autoregressive random process model was used to investigate a simulation
method® of spatially and temporally variative ground motion when characteristics
of motion are prescribed by a cross spectral density function matrix of frequency
and space vector between spatial points. In the simulation, surface ground which
two dimensionally spreads in relatively small region of approximately 0.2 square
kilometers is assumed to be homogeneous and nonisotropic with respect to the
direction of wave propagation. The formulation of a cross spectral density
function matrix was based on the model suggested by Harichandran and Vanmarcke-,
in their study on array data in Lotung, Taiwan.

Stochastic Representation of Earthquake Ground Motion Harichandran and
Vanmarcke>, proposed the following cross spectral density function model of space
and time random field, assuming the homogeneity of surface layers of ground and
the nonisotropy with respect to the direction of wave propagation, and regarding
the earthquake motion time series as a stationary process with zero mean.

IT1-783



S (Ra, ) S(£)7(Re, £)

¥ (Re,f) = | ¥ (Ze,f) | exp(-i2zfd)
P 7 (Re,f) | = A-exp { 26 (1-a+a 4)} (1)
-2 Re}
+ (1-A)exp { TGN (I-4+a &)}

9(H)= k (14 ( = )s)-i-a
fa

C - Xa

iz

where S(?b,f) is a cross spectral density function for two spatial points whose
separation is given by a distance separation vector E%. 0(f) is called frequency
dependent correlation distance, which shows the degree of correlation between
earthquake ground motions as a frequency-dependent spatial scale of fluctuation.
The coherence ]Y(?B,f)l decays exponentially with increase of the ratio of
magnitude of the distance separation vector and the frequency dependent
correlation distance. Parameter d is a lag~shift parameter which describes the
phase difference of motions at different spatial points. The nonisotropy is
dependent upon the directions of both the propagation velocity vector ¢ and the
distance separation vector '§B.

d=

Autoregressive Model of Wave Propagation Propagating earthquake motions may be
represented by the following correlated stationary autoregressive random processes
with zero mean.

m X
suik)= P_zl _Z_lb;o(i)sua(k-j) + =segitk) i=1,2,---,m (2)

[

in which m = number of spatial points, i1 = a locational index of a spatial point,
k = an index of discrete time t in t=(k-1)At, At=equal time interval of the given
time series, bi (j)= a deterministic function which is governed by the freguency
characteristics and sei(k) = an error function which is a white noise with zero
mean. The coefficients by (j) are to be determined so that the time series _u.(k)
may possess the prescribeg correlation function matrix, or equivalently the cross
spectral density matrix consisting of eq(l),which describes the characteristics of
propagating earthquake motions.

Appling the least mean square error criterion to eqg(2), the coefficients may
be determined by solving the following equations.
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where qu and Qqn consist of components of qu(l) , and

Bno = {bnu(l),bnn(Z)y‘ . -,b”(l{)]" (5)

It is noted that eq.(4) is a m-th order simultaneous matrix equation and can
be solved algebraically for the coefficients Bnp for n=1,2,°°°,m.

Then, the error function sEzi(k) in eq.(l) may be generated by

s & 1 (k) C 11 & 1 (k)
s & 2(k) Cz1 Cazz 0 & 2(k)
. = : . = C & (k) (6)
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In the above equation (6), Ei(k) is mutually independent random trains with zero
mean and their variance is unity. It is pointed out that a pair of input ground
acceleration and velocity should be simulated based on common random variables so
that the compatibility might be maintained mathematically for the relationship
between accelaration and velocity.

For a prescribed S(pg,f) or R(pg,RAt), the coefficients b; (j) and the error
terms _£.(k) are evaluated respectively by eq.(4) and eq.(6}). Then, a set of
sample time histories are simulated from eq.(2). A nonstationary process model may
be easily expressed with an envelope function g(t) as follows.

nui(k) = g(k)-sui(k)

n X
= Z Z bin(G,Bruek-) + nei k) i=L,2,~+,m (8)
P=1 j=1

in which g(k)=an envelope function which represents an evolutionary amplitude
trend by

_ t=d 1= (t-d)
g(t)= { Tp}exp{ o }

(9)

in which Td=the time lapse for the maximum amplitude and d=the lag shift parameter
which is specified by eq. 1.

Example A pair of nonstationary input ground accelaration and velocity at each
point was simulated for a region in Fig.l, where data in Table 1 were used. As the
power spectral density function at a representative point of the homogeneous
field, the following equation was used.

f".exp {_ _4_lf_l_} (10)
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Some of the results are shown in Figs. 2 and 3. The auto and cross
correlation functions of simulated waves were compared to the prescribed auto and
cross correlation functions in Figs. 4 and 5.

The proposed simulation method can describe the characteristics of spatially
and temporally variative earthquake ground motions. Furthermore, the
autoregressive model of this study may be properly adapted as the input earthquake
ground motions in a recursive covariance matrix equation proposed by Hoshiya~.
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Table-1
= Input Data
<
S‘ Input Data Values
To in eq.(3)| 2.0Hz
9 A 0.736
; a 0.147
k  in eq.(1)| 5210m
fa 1.09Hz
400m b 2.78
‘ | 2000m/s
m 6
. M. in eq.(2) 40
l C ] = At N 0.10ssc
T, in eq.(8)| 10.0sec

2000m/sec

Fig. 1 Homogeneous Field
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