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SUMMARY

In order to evaluate the seismic response of an alluvial basin, the practical
method of representing the scattered wave field with irregular boundaries and the
radiating wave phenomina for an infinitely far-field may be necessary. This paper
is concerned with a theoretical analysis and numerical evaluation based on the
wave propagation theory to f£ind dynamical characteristics of a slightly sedimental
basin standing alone on a half-spatial bed rock, subjected to obliquely incident
plane waves. Numerical examples of this system are shown in frequency and time
domain.

INTRODUCTION

Some recent experimental results such as the ones in MeXico city area. (1985)
corresponding to local site amplification and very strong variations in great
earthquake damage, have led us to think that geometrical surface configulations
may induce a local disparity in seismic motions. Investigations of the response
of bidimensional and laterally heterogeneous media to incident plane waves have
been carried out by Aki and Larner (1970), Bard and Bouchon (1980) whose works,
however, are limited to study of a few configurations.

The present study is concerned with the dynamic analysis of a slightly alluvial
bidimensional basin standing alone on a half-spatial basis. In describing this
problem with the complicated boundaries, the total displacement field is
separated into the incident motion and the scattered field due to the presence of
irregular boundaries. And, the latter field is further separated into the two
sets of fields, corresponding to the following subproblems;

(0) the one related to a half flat-stratum expanded infinitely in horizontal
direction, and

(1) the other corresponding to the difference field between the given scattered
field with laterally irregular boundaries and the auxiliary one (0).

By applying the Fourier transforms to this separated wave fields with respect to
time and spatial variables, the integral equations are derived in the domain of
freguency and wave numbers. In solving this eguations, the response functions are
expressed in terms of the unknown functions of the scattered field (1). Finally,
numerical results are presented for some physical properties of the problem in
frequency and time domain.

FORMULATION OF THE PROBLEM
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The bidimensional wave field is composed of multiple layers overlying a
half-space, and subjected to plane wave turbulences from the lower far-field.
Each medium is assumed to be perfectly elastic, and to be bounded by the
irregularly shaped surface S. and interface S. (j=I,II,...J). So that, the
following boundary conditions are required to-be satisfied;

on S (1-1)

T+ = 0

I

0
[‘j] = [f] on 85 (3=I,II,..J) (1-1i)
i Ty41

in which ﬁj and Tj are the displacement and stress vector in the medium (j) and

(i) the stress free condition at the surface S _,
(ii) the continuous conditions of stress and displacement at the interface Sj'

In addition, the radiation condition in the infinitely far field is required to
be satisfied. For the brevity of this analysis, it is convenient to write the
displacement field as a combination of the incident field @~ and the scattered

~

s
one U~ as follows;

i =at+ @ (2)

where the incident field is obtained in the closed form in frequency domain and
the scattered one may be presented in Fourier integral forms for the horizontal
direction by using the Cartesian coordinate system (x,z) in this spatial field,

(o]
%% = [dpe™ K (%,p) % (p) (3)
-0
in which % is the position vector in the wave field and Z(p) is denoted as the
unknown functions expanded in wave number domain. When the wave field composed
of the layered system with irregularly shaped boundaries is completely described,
it should contain upward-going waves together with downward ones. The scattered
representation in the half-spatial basis, however, has only downward components
which provides the approximate description in this field and introduces an
aberration, named Rayleigh ansatz error, which is practically small when the
geometrical irregularity in the lowest interface is slight and the incident waves
have only low frequency components. By instituting egs.(2), (3) into the boundary
conditions (1), the following dominant equation associated with the unknown
functions Z(p) is obtained,

[ape 'P*& (%, p) Z(p) = & R(x) @

The position vector of the irregular boundaries is denoted by % in the unique
expression of the horizontal coordinate x, and k is the lateral component of wave
number when incident turbulences are propagating obliquely. In order to derive
the boundary equation in the domain of wave numbers, the Fourier transform with
respect to the horizontal coordinate is to be applied to eq.(4), whose infinite
integrals are not convergent. Then, the proposed technique is associated with the
following restriction of the boundary configulation in horizontal direction,

(a) the irregular zone |xl§L which includes the irregularly shaped boundaries of
multiple layers, and

(b) the regular zone lx|>L which is composed of the flat-layered stratum.

And, the auxiliary subproblem which corresponds to the flat-layered half-space
having the boundaries in consistence with the objective ones inside the regular
zone is considered, and its solution expanded in wave number domain is given by
using the Dirac's delta function,

Z,(p) = 6 (p+1<)t;51 (p) By ()

the coefficients of which hold the following relationships,
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c =0 :|x|>L

ﬁ(ic) ﬁo (6)

By using the solution (5) of the auxiliary problem, the dominant equation (4) is
reconstructed with respect to the functions El(p), which are the differences
between the functions Z(p) and Zo(p)-

21(p) = 2(p) - %,(p) (7)

After Fourier transformed along the horizontal direction and changed in the order
of integrals, the equation (4) associated with the unknown functions il(p) may
yield the following integral equations,

G (@2 (@) + [dAp{R, (P,q) =Ky (P @) )21 (p) = Epl@) - Ey(a) (8)
in which the coefficients are obtained in the finite integral forms,
Rilpra] 1L geei(apx Gx;/p) o)
277 - -

R, (p,q) mr &, (p)
fl(q) _ 1 de -i(g+k)x fi(Xc)

= Zploxe & (% . (8-2)
£, (q) (%,,-k) &)~ (=) Ky

Furthermore, the coefficients can be expressed analytically when the boundaries
are composed of partially linearized planes in the irregular zone.

The displacement responses of this layered system are expressed in terms of the
solutions 2l(p) which are obtained in the integral equations (8),

o
i@ = ot + TR, -k)&] (<K By + [apeT A(X,P)Z (R)  (9)

- 00
When subjected to unit disturbances, the response functions (9) in frequency
domain are considered as the transfer functions §(X,w) of the system.
Consequently, by making use of the spectrum s(w) of the incident field, the
response functions in time domain are presented through the Fourier inversion
transforms with respect to frequency parameter w, as follows;

B t) = 3= fawel®t§ (%, u) s (w) (10)

NUMERICAL ANALYSIS AND CONCLUDING REMARKS

In evaluating the basic dynamic characteristics of a slightly alluvial basin
standing alone on a half-space, it is assumed that the bidimensional wave field
is constructed on a double layered half-space with partially linearized irregular
boundaries in the irregular zone |x|=SL and a negligibly slight surface layer in
the regular zone |x|>L where the bedrock appears nakedly, as shown in Fig. 1, and
the soil is composed of the linear hysteretic type viscoelastic medium whose
generalized Lame's constant are expressed in complex forms. In this numerical
analysis, the integral equations (8) are converted into the simultaneous equations
by means of the discretization and truncation technique in wave number domain
as well as the response functions (9) are into the finite summation forms. For
the culculation carried out in brief, the dimensionless parameters and
dimensionless components with superscript ( ) are introduced,

;{] = l‘. X] [E] = L[P] a (.UL/CO, :]E = kL, (11)
z Lz, (& al, T = teyl/L, Ej= cy/eq +3=I,11

1]
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3] = wlat], ®® =nm/a :|x|s

in which w, t are angular frequency and time factor, c cj=cjo(1+iDj) are the

Ol
standard shearing velocity and the generalized shearing velocity of medium (3j),
and h(x) is the depth function of irregularly shaped alluvial basin. In addition,
the following dimensionless parameters are necessary to describe this ground
system adequately, such as v.: Poisson's ratio, y: incident angle measured from
the vertical direction. The numerical values of dimensionless system parameters
for the alluvial basin are chosen as;

cI0=0-177, cIIO=1, VI=VII=0.333, DI=O.025, DII=O.01, ho=0.05, a=m/6

In the numerical integration and summation to obtain the responses in frequency
and time domain according to egs. (9), (10), there are no singular points because
of the application of an auxiliary flat-layered problem and the presence of
dissipative damping in the soil layer. Therefore ordinary methods of computation
can be applied while an appropriate interpolation technique is necessary in
evaluating discretized and truncated functions. The following remarks can be made
on the results of numerical analysis;

(1) As shown in Fig. 2, the phase velocities of scattered waves to incident SH or
P waves are presented condensable around the Love or Rayleigh surface wave modes
of the corresponding flat-layered systems.

(2) In Fig. 3, the absolute-valued transfer functions of slightly alluvial basins
show the considerable growth around the dominant frequencies of the flat-layered
systems inside the basin, whereas a little outside the basin.

(3) As found from Figs. 4 and 5, local site amplification on a sediment and
interacted phenomena between the components outside a basin and the inside ones
of distributed displacement amplitudes on the ground surface show the rather
dependence on incident wavelengths and the proportions of a basin.

(4) With regard to the transient bahavior of wave field, the remarkable
prolongation of wave propagating duration inside a basin to an incident Ricker
wavelet with a peak frequency w_ and few components in high frequency range, and
the rotating particle orbit due”to the presence of Rayleigh surface waves under
incident P wave turbulences are shown in Figs. 6, 7 and 8.

It is noted, however, that the boundary condition associated with the wave field
representation in a half-spatial basis are not yet completely satisfied in these
figures, and its aberration is small because of the slight irregularity in the
lowest interface and the incident field with low frequency components.

In conclusion, it can be mentioned that the present superposing description
of the scattered wave field is useful for the construction of geophysical models,
such as a sediment standing alone on a half-space with irregular boundaries.
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Fig. 2 Phase velocities: Model A and
flat layer, h0=0.05, h1=0, Y=T/3.

’v/ﬁil (b) P-field

......... )—(=—1

0 T

Fig. 3 Transfer functions on SO: Model A, ﬁ6=0.05, ﬁl=0, Y=m/3.
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Fig. 7 Time histories of displacement on S

Fig. 8 Time histories of
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Mcdel A, ho=0.05, hl=0.





