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SUMMARY

Characteristic accelerograms recorded in Mexico City are discussed and
compared with accelerograms recorded in Japan. Strain dependency of Mexico's
lacustrine clay is less remarkable than that of Japanese alluvial clay.

Beat waves calculated using BEM-FEM hybrid model for SV and SH waves problems
are harmonious with the ones redorded at Central de Abastos Oficina (CDAO) and
Secretaria de Comunicaciones y Transportes (SCT). At CDAQ site, it seemed that
seismic waves propagated from the west hill and the south volcano toward
opposite directions. An accelerogram recorded at Ogata Village, Japan during the
1983 Japan Sea Earthquake is very similar to that of CDAO and the same BEM—FEM
hybrid analyses are addressed.

INTRODUCTION

On September 19, 1985, an earthquake of magnitude Ms=8.1 occured with the
epicenter near the south coast of central Mexico and caused severe damages. In
Mexico City, nearly 400km from the epicenter, strong-motions were observed at
some stations (ref. to Fig.l).

Accelerograms in Mexico City are characterized by an extreme amplification
on the very soft soil deposit on the basin structure, by beat waveforms of 2 to
4 seconds and by a duration time of 1 to 3 minites.

In Japan very similar acceleration records were observed at Ogata Village
(0GV, ref. to Fig.3) during the 1983 Japan Sea Earthquake, Ms=7.7, 4=100km. Soil
conditions of OGV are similar to those of Mexico City. This paper describes a
comparison of the strong ground motion observed on the sedimentary layers and
the analytical studies based on the 2-dimensional BEM-FEM Hybrid analysis.

CHARACTERISTICS OF OBSERVATION RECORDS AND LACUSTRINE SEDIMENTARY LAYERS

In Mexico City, strong-motions were recorded by Universidad Nacional
Autonoma de Mexico (UNAM) at 11 locations including 3 locations on lava plateau
of UNAM. Although the subsurface structures of the lava plateau is not clear, it
is assumed herein to be of bedrock. This paper reviews the records of 2 sites of
the Lake zone, Secretaria de Comunicaciones y Transportes (SCT) and Central de
Abastos Officina (CDAO). Fig.2 shows the observed acceleration waveforms in
Mexico City. The ground motions at the two sites SCT and CDAO are characterized
by a relatively long period, 2 to 4 seconds, and beat waveforms following.

The acceleration record observed in Ogata Village (OGV) located at the east side
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of Lake Hachirogata as shown in Fig.3 is very similar to that at CDAO. The
waveforms and the corresponding response envelope spectra are compared and the
result is shown in Fig.4. The change of predominant periods due to bady waves
and the dispersive surface waves are seen.

In Fig.5, the shear strain dependency of the shear modulus of lacustrine
clay in Mexico-City 1)2) is compared with those of the average Japanese alluvial
clay. 3)4) The values of OGV and CDAO which were estimated by using the relation
of maximum shear strain and the maximum velocity are almost the same and the
shear dependency of these sites is less conspicuous than the average Japanese
cohesive soil. The value of SCT suggests that the nonlinearity is not so
strong.

ANALYTICAL STUDIES ON LATER PHASES IN THE MEXICO-CITY-TYPE ALLUVIAL DEPOSITS

LAKE ZONE IN MEXICO CITY Fig.6 shows three geological models analyzed. Based
on the geological data, specifications pertaining to the ground conditions
corresponding to each of the models have been given. The values are shown in
Table 1. Model 1 (top layer Vs=40m/sj;thickness 40m) and Model 2 (top layer
Vs=70m/s; thichness 30m) are used to make a qualitative study of the ground
motion corresponding to the EW sections of CDAO and SCT respectively. Model 3 is
used to study the ground motion corresponding to the NS section ggcluding CDAO
site. The BEM-FEM hybrid model was applied to these three models

The two-dimesional BEM (Boundary Element Method) model with 35 nodes has
been used at the outer boundaries, and FEM (Finite Element Method) model with
about 900 nodes has been used at the inside areas. The frequency range to be
analyzed is from 0.14Hz (7sec) to 1Hz. The incident angle should be 20', which
has begg obtained by using the structures of the crust and mantle studied by J.
E. Fix ’ and other materials.

In this analysis, it js assumed that an input wave takes the waveform of
UNAM No.2, as the incident wave of outcrop.

Fig.7 to Fig.9 show the transfer functions of the surface soil layer. It
also shows a conspicuous difference depending on the location. Although
remarkable changes of predominant frequency are observed in the inclined part of
Model 2 and model 3, a transfer function similar to that of one-dimensinal
theory was also observed where no incline existed.

Fig.l0 shows the distribution of the maximum acceleration Amax of the
ground surface in case of Model 1 to Model 3. Even if the same seismic wave
arrives at the bedrock, Amax of the ground surface differs greatly depending on
the place. Amax distribution of Model 2 tends to increase at the west edge of
the soft layer, and this result is corresponding to the state of the damages.

Fig.ll shows the comparison of the recorded waveforms with the analytical
ones to SH-Wave (a) and SV-~Wave (b) respectively. Both waveforms show an
extremely good agreement. In Fig.l2, the recoded waveforms of the NS direction
of CDAO are compared with the analytical omes at point D of Model 3, which
corresponds with the analytical model used for studying the effect of waves
carried from the direction of a small volcano on the south side. In Fig.l3, the
recorded waveforms of NS of CDAO is compared with the analytical omes of Model
1, used for studying the effect of surface waves due to the input from the west
side. While the analytical waveform of Model 3 (NS section) shows a beat
waveform harmonious with the observed ome in NS direction, the analytical
waveform of Model 1 (EW section) contains a few beat parts and differs in the
later phases from the observed ome. According to the above results, the computed
beat waveform coinciding with the recorde one at CDAO, NS suggests the
possibility of the effect of seismic waves carried from the south.

OHGATA VILLAGE IN JAPAN Similar analyses to the M9¥ico City were performed by
modelling A-A' section in Fig.2 as shown in Fig.l4.’’ Fig.15 shows an analytical
model (2-dimensional BEM~FEM hybrid model). An analysis performed as the SH
problem is shown herein. The frequency range to be analized is limited from
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0.14Hz (7sec) to 1Hz. Based on the geological data, values pertaining to the
soil conditions have been assigned as shown in Table 2. In this analysis, the
acceleration record observed in Akita (4=120km) is used as input wave (control
wave at outcrop) after converting the direction from N-S to NW-SE and applying
decomposition analysis. The incident angle is assumed to be 10°.

Fig.1l6 show the comparison of calculated waveform with observed one.
Calculated wavetorm by BEM-FEM hybrid model is similar to observed waveform.

CONCLUDING REMARKS

An analytical review was made to evaluate the qualitative characteristics
of ground motion with the Mexico Valley in mind. The summary of the analytical
studies are as follows:

1. The maximum acceleration becomes large at the side of input. This tendency
matches the location of the damaged places.

2. The beat waves at CDA originate in the subsurface structure inclined toward
north from the small volcano in the south, and the motion of waves
propagating diffractively produces a great effect.

3. The analyzed waveforms of SH and SV wave for SCT show an extremely good
correspondence with the records. On the distribution of the maximum
acceleration for the lake zone by analysis, the maximum acceleration on the
surface ground in the center of this zone is larger than that of the
circumference, and this tendency corresponds to the situation with
occurrence of building damages.

The strong motion of Ogata Village during the Japan Sea Earthquake in

which several conditions were similar to those of Mexico Earthquake was compared

with the recordes of Mexico City.

4. The accelerogram at CDAO, EW resembles OGV, NS, due to similar soil
conditions. The change of predominant periods due to body waves and tendency
of dispersive surface waves are clarified at OGV, NS.
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