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SUMMARY

A New finite element method is proposed to simulate ground motion in large
basins. The degrees of freedom of the ground systems is drastically reduced by
using the eigenfunctions for Love waves as shape functions in formulating finite
element matrices. Through use of this method two types of analyses are
demonstrated. One is eigen value analysis, and ‘the other is a simulation of
seismic waves which were observed on a thick sedimentary basin. Under these
analyses, quantitative accuracy and applicability of this method for prospecting
ground motion have been made clear.

INTRODUCTION

Not only Mexico City badly damaged in the 1985 Michoacan earthquake, but
also large cities in Japan like Tokyo and Osaka are located on a large scale of
sedimentary basins. Numerical prediction of earthquake motion associated with
this kind of ground condition will be important for mitigating earthquake
disaster in urban areas. But it still remains difficult to calculate ground
motion taking the effect of a broad range of topography into account because
such implementation requires considerable computer storage. In order to make it
practical to simulate surface wave propagation in large areas, a simplified
finite element procedure which employs a smaller number of degrees of freedom
has been developed. In this paper, we will describe an outline of the procedure
and demonstrate the application for the simulation of seismic waves with a main
focus on Love waves.

FORMULATION OF THE FINITE ELEMENT MATRICES

Let us consider Love waves propagating in the horizontal direction of x, as
shown in Fig.l. Sedimentary ground is highly idealized as a single surface layer
over a rigid half-space. Movable nodes of this model are located only on the
ground surface with fixed nodes at the basement. Then the finite element
modeling is performed by dividing the ground into some trapezoid elements. Any
arbitrary displacement in each element, shown in Fig.2, is expressed in terms of
product of the nodal displacements on the surface and eigenfunctions for Love
waves which satisfy the condition of the sedimentary stratigraphy.

In the above sense the displacement in the direction of y, v(x,z), can be
expressed with the interpolation functions f£(x,z) and the nodal displacements V
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f(x,z) vy

vix,z) = ——————-(xj—x X=Xj @D)

X474 Vj
Subscripts i and j indicate nodal points. f(x,z) satisfies the conditions of
f(x,0)=1 and £(x,-H)=0, in which H is the depth of the element. This formula can
be represented in the following matrix form,

v(x,z) = LV (2)
where
£(x,2z) Vi
L= (xj—x x—xi), V = v (3)
X57Xg f

Therefore a shear strain vector is given by

Yxy ) dv/9x ) 1 —f+(xj—x)fX f+(x—xi)fX \A “
Yzy 3v/dz X 47Xy (xj—x)fz (x—xi)fz Vj
or alternatively
y=B (5)
where
Yy 1 —f+(x;-x)f, f+(x-x.)f
y = y , B = J X i’"x )
Yoy X57%g (xj—x)fz (x—xi)fz
Shear stress may be obtained by premultiplying GI by the Y
T = GIy = GBV @)

in which T is an identity matrix and G is shear modulus. From the principle of
the virtual work element stiffness matrix can be determined by

m = pJ LTLd(vol) (8)
k = GfVBTBd(vol) (9)

in which p is mass density and fv d(vol) denotes volume integration through the
element. The matrix m is the consistent matrix. In its place we have employed
the lumped mass matrix, which is an approximation to the consistent matrix, in
order to simplify calculations. The global stiffness and mass matrices are
constructed by superposing the all element matrices. With these matrices, eigen
value analysis or response analysis can be conducted in the same way as ordinary
finite element methods.

ACCURACY IN EIGENVALUE ANALYSIS

Accuracy of this method was investigated through an eigenvalue analysis in
comparison with an ordinary finite element method. A ground model shown in the
Fig.3 was employed for this analysis. For the horizontally layered model,
theoretical natural periods "T " and-eigenvectors "up," can be easily determined

1I-636



(Ref. 1) by

4H
T = — v/(2m+1)*+(20H/L)? (10)
Vs
nmx (2m+1)mz
up(x,2) = a sin sin an
L 2H

where a is an arbitrary constant, m and n define order of vertical and
horizontal mode, respectively. The finite element modeling in this method was
performed by using cos mz/2H, which is the eigenfunctions for the fundamental-
mode Love waves. Fig.4 shows an example of eigen vectors evaluated by each
method together with distortion of ground surface at the top of each figure. As
is evident from the figures, the two vectors look similar to each other. The
elapsed time in calculating the first 30 modes of the ground by each method is
tabulated in Table 1 with degrees of freedom of each finite element model. It
can be seen from this table that the elapsed time in the computation by this
method is 1/11 times as much as the one by the ordinary methods.

Fig.5 shows comparison of accuracy of the two method in the analysis. The
dimensionless value, A/Ax, represents a ratio of wave length to the interval
between horizontally adjacent nodes. T is a natural period of the ground model
calculated by each method. As seen from this figure, the accuracy decreases as
the value of A/Ax becomes smaller. Although the accuracy of the proposed method
is worse than that of the ordinary FEM, the value of the difference is at most 3
%Z. This difference is not so large considering the reduction of the elapsed
time. Though, it is omitted in this paper, this method also has proved to reduce
elapsed time by 1/15 in the simulation of waves induced in a model ground with
accuracy almost the same as that of the ordinary FEM (Ref. 2).

SIMULATION OF GROUND MOTIONS IN THE KANTO PLAIN, JAPAN

By using this method seismic waves observed on thick sedimentary basin
during the 1984 western Nagano prefecture earthquake were simulated. Fig.6 shows
the map of the south part of the Kanto plain. The seismic waves were observed at
the sites of ASK, NGT and YKH. On this basin, ASK is located on the bedrock and
NGT and YKH are located on the thick sedimentary ground. As the epicenter of
this earthquake is located about 200 km northwest to ASK, the direction of ASK-
NGT-YKH line runs parallel to the radial one, approximately. Fig.7 shows a
cross—section model of this area. Shear wave velocity of this model is 700m/s
and the depth at NGT is 1.0km (Ref. 3). Seismic waves at NGT and YKH were
simulated by applying the observed wave at ASK to the basement nodes considering
shear wave velocity traveling in the bedrock(3km/s). Shape functions used in
this analysis are the eigenfunctions for the fundamental mode(m=0) and the next
higher mode(m=1) Love waves. Total response waves can be obtained as a sum of
the result calculated by using each function.

Fig.8 shows the comparison of the observed and the calculated waveforms at
NGT and YKH. Fig.9 shows Fourier spectra of the waves. The component of the
longer period (about from 4 to 6 s) and shorter period (about from 1 to 2 s) in
the calculated wave forms is obtained from calculation by using eigenfunction
for m=0 and m=1, respectively. Despite the small number of degrees of the
freedom, only 200 for this ground model, both the observed and simulated waves
look rather similar regarding their predominant period, duration and amplitude.
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CONCLUSION

A practical procedure is presented for numerical analysis on surface waves

propagating in a large basin.

As this procedure is capable of reducing the

number of degrees of freedom, it seems promising for extending three-dimensional

procedure.
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Fig.1 Finite element modeling
in the proposed method.

72
Fig.2 Trapezoid element
devided by 1 and j sections.

Tab]e.l Comparison of CPU time elapsed in
S — the eigenvalue analysis (by HITAC M-280H).
A- #
/] : VS v H . Degrees of
A Y 4 CPU time Freedom
Vard Vo4l
ILLLTILTIL LS This methodd|  0.50 s 53
Fio.3 Ground model employed for fooinary FEM&l 5.57 s 32
the eicenvalue analysis, Ratio (0/a) 1/11. 1/6
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Fig.4 An example of eigen vectors. Fig,5 Comparison of accuracy in
(Surface distortions are

the eigenvalue analysis.
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Fig.6 Map of the south part of the Kanto recion.
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Fig.7 Cross-section of ASK-NGT-YKH line.
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