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SUMMARY

Reflection from boundary of numerical grids have always presented the
difficulties in applying discrete method to simulate physical phenomena. In this
paper, absorbing boundary condition , which is proposed by Kosloff, are applied
to the numerical simulations of two-dimensional SH wave propagation problem by
finite difference method. The effectiveness of this absorbing boundary condition
is evaluated by comparing the wave propagation theory.

INTRODUCTION

In the numerical simulation of wave propagation problems by finite
element and finite difference method, it is necessary to eliminate the boundary
events which are generated by the boundary of the numerical grids. These
events arise because the numerical mesh covers a finite region of space. A
number of methods have been proposed for constructing absorbing boundaries.

Lysmer et al.(Ref. 1) proposed a " viscous boundary ", which absorbed
scattering waves effectively. Lysmer et al.(Ref. 2) proposed a " transmitting
boundary ", which is intended to absorb body waves and surface waves on the
lateral infinite boundary. These absorbing boundary condition are dependent on
the frequency. Smith (Ref. 3), Cundall et al.(Ref. 4) and Kunar et al.(Ref. 5)
proposed a " nonreflecting boundary " , which can be achieved by averaging the
solution of two problems, one involving fixed(Dirichlet) boundary condition and
one involving free(Neumann) boundary conditions. This absorbing boundary is
independent on the freqguency.

On the other hand, Kosloff et al.(Ref. 6) proposed the method, which
absorbed radiating wave from the interior region to outward on the absorbing
region around about a interior region. This method is applied to the Schrodinger
equation and to the acoustic equation in one and two dimension by the Foureir
method. But it is not clear how to apply this type of boundary condition to
discrete method such as the finite difference method. Therefore, in this study
Kosloff's method 1is applied to the simulation of two-dimensional SH wave
propagation problems by finite difference method.

METHODS

Absorbing Boundary Condition for Acoustic and Elastic Wave Eguations
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For simplicity, one-dimensional wave propagation problem is considered. Wave
motion in the interior region is given by equation (1)
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where C is phase velocity and u is present displacement.
In order to derive the equation in the absorbing region, equation (1) is
rewritten as two coupled first-order differential equations in time.
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The first equation in (2) expressed the relation V= 3u/ 3t, whereas the second
equation is identical to (1). The absorbing boundary condition is achieved by
replacing (2) with the system
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where Y is the potential, which play the same role of the optical potential in
the Schrodinger equation. This potential, which is shown in Fig-1l , is expressed
in the equation (4)
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where, Uo is constant, O is a decay factor and X denotes the distance from the
boundary. In constructing numerical schemes, it sometimes may be more convenient
to work with a single second-order equation. This equation is obtained from (3)
after elimination of the variable V, giving
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Equation (5) can be integrated in time with a suitable stable time differencing
scheme. And in case of the two-dimensional problem, wave equation is given by the
equation (6)
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For the elastic problem, the elastic wave equations in absorbing region can
be derived by the same way to the acoustic case. Final wave equations form can be
expressed
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where, o and B are velocity of compressional and shear waves, respectively.

Derivation of Reflection and Transmission Coefficients for The One-Dimensional

Acoustic Wave Equation Consider one-dimensional wave propagation in region

—® <X< o , According to Kosloff (Ref.6), X axis is divided into three regions

which is shown in Fig-2. A plane wave (l*exp(-ikx)) in the region X<a (Region-1)
generates a reflected wave (R*exp(ikx)) at the boundary at X=a. The reflected
coefficient R 1s generally complex. In the region X>b (Region-3) only the
transmitted wave (T*exp(-ikx)) propagates toward infinity with T denoting the
generalized transmission coefficient. In the reign a<X<b (Region-2) transmitted
wave (C*exp(-ikx)) at the boundary at X=a and reflected wave (D*exp(ikx)) at the
boundary at X=b are generated. It is considered that the reflection wave and
transmission wave propagating from the region a<X<b are absorbed in this region
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by way of introducing absorbing coefficients. Absorbing coefficients differs form
zero only in the region a<X<b. Accordingly the region a<X<b is divided into small
region : a=X0<X1<X2<-~--<Xm=b. Applying the condition for continuity of
displacement and continuity of traction at the each interface, the -equation,
which relates the amplitude coefficient in the (m)th region to the corresponding
coefficients in the (m+l)th region, can be derived.
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where [Fm] is propagator matrix and is referred to Ref. 4.
A successive application of (9) will yield a connection between the coefficients
of at any two regions. The boundary condition at X=a and X=b are given by
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respectively. Putting these condition into (9) and rearranging, we obtain
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The matrix elements are formed for the product of the individual matrices is (9)

in each region. The generalized reflection and transmission coefficients can be
obtained for (11) giving
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The absorbing effects can be evaluated by the magnitude of the reflection
coefficient R and transmission coefficient T of the absorbing region. When these
coefficients are kept small, the propagation wave does not reflect from the
absorbing boundary into the interior region and also they does not transmit to
the exterior region. Fig-3 shows the reflection and transmission coefficients as
a function of wavenumber. The parameters are C= 100 (m/sec.),number of partitions
m=20. Fig-3a is a example which absorbing parameters are not adequate. In this
case, the transmission coefficient is fairly large. In Fig—-3b, these
coefficients are small except at the extreme of small wave number. In this way
the undetermined parameters, Uo and o , affect the values of the magnitude R and
T. Accordingly it is necessary to estimate the optimal values of Uo and o , which
make small the coefficients R and T as possible. As these parameters can not be
evaluated analytically, they have to be evaluated numerically by way of trial
and error.

APPLICATION AND RESULTS

It 1is considercd that propagation waves from the interior region into the
exterior region such as reflected wave, which is generated by the reflected of
incident wave on the free surface of half space medium, is downward, and as
scattering wave, which is caused by artificially or irregular topography in a
half space, is radiating to outward, are all absorbed in the absorbing region.
The wave motion can be obtained by integrating the equations (5) and (6) in
regard to time. For the purpose of solving these equations, finite difference
method is applied in this applications.

Response of Half Space Medium Fig-4 show a geometry of analytical half space

model,which removed irregularity. Continuous lines indicate to the interior
region. The absorbing region is illustrated by assemblage of little open circle.
The interior region is 80m x 40m and the absorbing region is 160m x 80m. Mesh
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size of each region is dx=dz=2m and phase velocity is C=100 (m/sec.). The
absorbing region is surrounding by the numerical mesh and parameters in the
equation (4) are given by Uo = 140 (1l/sec.) and @ = 0.083 (1/m). The period of
input wave 1is 0.18 sec. Fig-6 shows the result of the simulation ,which the
impulse displacement is given at the point O in Fig-4. Fig-7 shows the result of
the simulation, which SH wave propagate from bottom vertically. The bold lines in
Fig-6a and Fig-7a show time history of response at the point P in the soil and at
center point O on the free surface of the model, respectively . The thin lines
in Fig-7a is indicate response at the same point calculated by wave propagation
theory. 1In each case, a little reverberation remains just after a main shock.
Its reverberation depends on the discreteness of space and time. And also a small
long period vibration remains the latter part of the time history. This vibration
is occurred becouse the reflection coefficient R can not be perfectly zero in the
absorbing region. But,these reverberation is able to be negligible.

Response of Bank and Surrounding Soil Fig-5 shows a analytical model, which
have bank and surrounding soil topography. The property of soil is uniform and
analytical region size and mesh size are same to the previous model in Fig-4
except the bank. The bank size is 10m x 12m. The period of incident wave is 0.18
sec. and is propagating vertically from bottom. And the parameters for the
calculation are C=100 (m/sec.). ,Uo =140 (1l/sec.) and @& =0.083 (1/m). In this
model, it is considered that scattering wave are generated by the presence of the
bank in addition to reflection wave on the surface. Fig-8 shows the results of
the simulation computed and Fig-8a shows time history of response at a center of
bank.

CONCLUSIONS

Kosloff's method is applied to the simulation of the one or two-dimensional

SH wave propagation problems. This absorbing parameters, which has been
established to one-dimensional wave propagation problem,are well applied to
eliminate the two-dimensional wave propagation problem. As the absorbing region
is added around interior region, total analytical region become fairly large.
But if the absorbing parameters in the absorbing region can be estimated before
the analysis, the boundary condition on the outside absorbing region can be given
by the fixed(Dirichlet) boundary condition and special boundary technique is
unnecessary.
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Fig-2. One-dimensional model
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Fig-6. Time history of the half space soil
(a) Input wave at point O on the free surface and response wave

at point P in the soil

(b) Response of half space medium
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Fig-7. Time history of the half space
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Fig-8. Time history of the bank and surrounding soil topography
(a) Input wave at the bottom and response wave at the top of
the bank
(b) Response of the bank and surrounding soil topography
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