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SUMMARY

The objective of this study is to investigate the amplification effect
of single layered soil medium. To obtain the amplification spectra, the
generalized ray theory [1] [2] is employed to calculate the velocity responses
in time domain, in which the source of shear force with sine-like time function
is assumed, and the fundamental frequency is about 2.4 Hz in far field for the
calculated amplification spectra, also the recorded strong ground motion and the
calculated amplification spectra in SMART-1 array region [3] were wused for
comparison, from which we observed that the amplification effect was most
obvious in the frquency range from 0.2 Hz to 1.5 Hz for SMART-1 array.

INTRODUCTION

As the fault slipped, the released energy, which propagated in the soil
media, will be recorded on the ground surface. Since the signals received will
be different for distinct media through which the seismic wave propagate, hence
it is the main goal for us to study the amplification effect of soil medium, in
which the seismic wave propagate. Generally speaking, the deeper media under
the crust are composed of rock or other harder materials which will have 1little
amplification effect on the propagation of seismic wave, however, the surface
layer, due to its soft property, will amplify the signals of the propagating
seismic wave. 1In site study, a large number of strong ground motion has been
recorded in SMART-1 array, and the site-dependent spectrum has been studied by
using these recorded data, hence, for comparison, the paper presented here will
be devoted to the study of soil amplification effect theoretically, where the
generalized ray theory [2] will be employed to obtain the responses of seismic
wave propagating in single layered soil medium overlaying half space. For the
simulation of seismic source, the equalvalent shear force is adopted as a source
model, then wave from the source can be represented by an integral
mathematically, which is known as a ray, and when the wave impinge upon the free
surface or interface, it will be transmitted into another medium or reflected
back from the boundary, thus, the transmission or reflection coefficients [4]
must be considered. Finally, the well-known Cagniard method [5] is used for
inverse Laplace transform to save the running time for computer and reduce the
numerical error.

GENERALIZED RAY THEORY

A single layered medium overlaying half-space as shown in Fig. 1 is assumed
in this study. The material parameters for the upper medium and half space are
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respectively dednoted by pg,uy, ¢q, Cy, 2y, by, py, uy, ¢y, C,, &, and bz,where
P is the mass density, W is shear modulus, c¢ is the compressive wave speed, C
is the shear wave speed , a = 1l/c is the slowness for compressive wave |,
whereas b = 1/C is the slowness for shear wave , on which the parameters with
subscript "1" and "2" denote those for top layer and half space respectively.

Generalized Ray Integral The Helmoholtz decomposition for displacement U and
body force F are respectively written as

T=vé+9x 8, v-¢ =0, (1)

VG +Vx ﬁ, V’ﬁ=0, (2)

=
I

where ¢ and G are the scalar potentials and ¢ and H are vector potential
functions. If we let

¢ = 1/rdy/08e - 8¢/orey + Xey, (3)

=14
]

1/roH,/80e, - OH,/drey + H S, (4)

then by substituting'equation (1) ,(2),(3) and (4) into Navier's equation, giving

c®v3¢ + G =0%¢/at?, (5)
C*v3¢  + Hp=02¢/0t?, (6)
c2y®y + Hy=0%x/at2, (7)

where V2 =82/8 2 4+ 1/r3/dr + 1/r282/802%+ 82/8z%> . If we define Laplace and
Hankel transforms to be employed as

0,0 = [ gr,0,00etar, (8)

Zn(g,e,s) = L ;(r,e,s)ln(sgr)rdr, (9)

where J,is the Bessel function of first kind of order n, t denotes time variable
and r denotes the epicenter distance. Then for an initially static particle
excited by a concentrated body force F with acting duration £(t) at a distance

. : . . - - - - .
Zz, under the interface in a direction @ = a&- + ageg + aze; , the potential
solutions of which are

$(r,z,s) = azsz-F_(S)LSpe—snzlz—z"l Jo(sEr)EdE

+ arsz_F-(s)L Sq e—snz,z—z"l J1(sEx)EdE, (10)
¥(r,z,s) =-a,s f(s)J'o S“,e‘scziznz"| Jo(sEr)dg
_ hd "SCzIZ“Zel
-ars F(s) ,Sve Jq (sEr)dg, (11)

-sl;zl z—zol

X(r,z,s) =-::-1(;_,sz—f‘(s)J0 Spe Jy (sEr)dE, - (12)

where F(s) = f(s)/(lﬂtpzsz)l, Sp=-€, S} = -&/n2, Sy = /Ty, S} =€, Sh= 1/(%263),
e=sgn(z-z,), ny= ( £+ azz)i,gz= (E%+b3) ,and £(s) is the Laplace transform of £(t)
From equation (1), (10), (11) and %12), we obtain the horizontal displacement
for the concentrated force acting in horizontal direction as
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T - -saf(s>fosp'l>rpe'5”2!”"1 Jo(sEr)EdE
3= *® -sCzlz—zal
-s° F(s) ,SiDrve Jo(sEr)EdE
+fif(s)J' S3D., ~sny|z-2, | J; (sgr) dg
r 0
+§E<5)Ls¢nrve's‘2|z"z°‘ Jy(sEr) df
@ — - R 3
ﬁ;F(s)J’oshDrhe a2z J; (sEr) dE (13)

where Drp =<« g y Dpy = -€§2, Drp = 1.

As the wave impinge upon the boundary, the impinging point can be treated as
a new source and again the wave from the new source will imping wupon another
boundary. Hence, the ray integral can be constructed by considering the source
function and reflection or transmission coefficients. The following example
shows the P-wave, emitted from half space, be transmitted into the upper medium,
then after reflected twice it arrive the receiver on surface, of which the ray
integral is expressed as

(Er)1=-s3?(s)LSPTF(,;’R‘SOS’RSP)DIP o MED 5 (sEr)EaE, (14)

where h(E ,2) = n,z, + 25 + Nyz, supercript '(0)' means free surface and
Rgs’ denotes the reflection coefficient for the incident S-wave reflected as S-
wave on the free surface, whereas subscript f(1)f, it denotes interface, then
R(1) denotes the reflection coefficient for the incident S-wave reflected as P-
wave on the interface and T\.'is that for the incident P-wave transmitted into
medium 1 as S-wave . As for the other reflection and transmission coefficients,
they can be explained in the same way, and the interested reader can refer to
reference [4]. It should be noticed that the receiver function in equation (14)
must be modified as follows [2]

f (0) (0) i 1) (1)
Drp= Drp+ Rpp Drp+ Rps Dpy s Dlrp= Tpp' Drp* Tpg Dpys (15)
f (0) (0) i (1) (1)
D-y = Dr‘v+ P‘SF’ Drp+ Rgs Drys Drv= Tep Drp+ TSS Dr‘v’ (16)
f i (1)
D=2, D=Ty . (17)

where the superscript 'f' denotes free surface and 'i' denotes interface.
Hence, if the wave is multiply reflected in surface layer, then the general
ray integral for equation (l4) can be written as

(Er)ﬁ-saf(s)JOS(E)H(E)DIe "sh(E.2) 5 (sEr)EdE, (18)

where I is the product of reflection and transmission coefficients.
At the moment, for an initial static condition, the velocity in Laplace
transform can be derived as

Vr = SEI‘; (19)

Futhermore, the responses for shear force source can be obtained by the following
expression

s du.
Ur =3z > (20)

where the superscript 's' denote the shear force source.
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Cagniard Method If we express the integral as follows

@

—I—r(r:z,s) = J.o Er(g)e—Sh(E’zbo(SEr)gdg, (21)

where Er(E) is an even function of £, then the inverse of equation (19) can be
obtained by convolving I-(r,z,t) with the inverse of -¢&F (s).

The 1inverse of equation (21) can be achieved by the well-known Cagniard
method. To begin with this work, the Bessel function in equation (21) must be
expanded in exponential form, which gives

_ 2 (n/2
I.(r,z,s) =-1—[-R9J- do| E- (£)e% gde, (22)
[}
where
g(r,z,E) = igrcosw - h(E,z), (23)
if we let
-t = g(r,z,£), (24)

and keep t real and greater than zero, then the inverse of equation (22) can be
obtained by observation,that is to say,if we transform equation (22) in Eg-plane
into t-plane by virtue of equation (24) as shown in Fig. 2 and 3, it gives

— 2 I‘II/Z J 3E e
I.(r,z,8) = =Re J, dw A'B'Er[ﬁ(t,w)]g['a—t']we tdt, (25)

and the inverse of Ir is
2 n/2 3t
Ir(r,z,s) = H(t—tm)-;ReJ Er[E(t,w)]ElzE ydv , (26)
0

where H(t) is the Heaviside step function, and tp is the arrival time, which is
obtained by substituting the stationary point Ep obtained from [8t/8E], = O into
equation (24).

NUMERICAL RESULTS AND CONCLUSION

The amplification spectra shown in Fig. 4 and 5 [3] were obtained from the
data recorded in SMART-1 array on Jan. 16, May 20 and July 30 in the year of
1986 which are hereafter referred to as case I, II and III respectively. As for
the epicenter distance and focal depth in case I are respectively 22.2 km and
10.2 km, those for case II are 67.9 km and 15.8 km and for case III they are 5.8
km and 1.6 km, It is found from these figures that the frequency for predominant
amplification range from 0.2 Hz to 1.5 Hz.

In order to check the observed velocity amplification spectrum
theoretically, the thickness h of the surface layer is assumed 400 m, and the
mass density, shear modulus, compressive wave speed and shear wave speed for
surface layer and half space are respectively given as p;=1800kg/m’®,
M;=1.023x10°NT/m*, ¢;=1900m/s, C;=775.67m/s, p,=2700kg/m®, M,=14.4x10° NT/m*,
c2=4000m/s, C,=2309.4m/s, and the distance between the source and the interface
are 2z, = 9.8 km for case I, z, =15.4 km for case II, z, = 1.2 km for case III.

To simulate the seismic source, the shear force source with sine-like time
function

£(t) = -PA™¢2%; 10PA™®t® - 40PA™®t® 4+ 80PA "t
-80PA™® t° + 32PAT°t° 0<t<24
=0, 244t
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is assumed, where P is the magnitude of the applied force and equals to 10*° NT
in this case, whereas A is half of the applied duration, and we assume A =0.2sec
in this study.

To calculate the total responses, 1364 and 682 rays were respectively
considered at the locations on free surface and interface , of which the
amplification spectra for case III, I and II are respectively depicted in Fig.6,
7 and 8, then from these figures, we observe that the theorectical fundamental
frequency is more closer to that of observed data for case I and II than for
case III, this insures us that the ray theory is an useful mathematical tool for
the calculation of amplification spectra, furthermore, it suggests that the
consideration of finite fault is necessary for the calculation of amplification
spectra in near field.
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Fig. 1 The geometrical and material Fig. 2 The Z-plane in Cagniard method

parameters for mathematical
model under investigation
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Fig. 3 The t-plane in Cagniard method
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Fig. 5 The EW-direction velocity
amplification spectrum
in SMART-1 region
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Fig. 7 The velocity amplification
specturm in epicenter distance
22.2 km by generalized ray
theory
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Fig. 4 The NS-direction velocity
amplification spectrum
in SMART-1 region
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Fig. 6 The velocity amplification
specturm in epicenter distance
5.8 km by generalized ray
theory
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Fig. 8 The velocity amplification
specturm in epicenter distance
67.9 km by generalized ray
theory
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