THE CHARACTERISTICS OF UNDERGROUND EARTHQUAKE MOTIONS OBSERVED IN THE MUD STONE LAYER IN TOKYO

Haruhiko YOKOTA¹, Keiji SHIBA¹ and Keiichi OKADA¹

¹Institute of Technology, Shimizu Corporation, Koto-ku, Tokyo, Japan

SUMMARY

In this paper, a number of earthquakes which have occurred around Tokyo are classified into eight focal regions and the characteristics of underground earthquake motions are investigated using the velocity response spectra of both the horizontal and vertical components for each of the regions. The response spectra for the largest earthquake expected to occur in each of the regions are also compared with those of design earthquake motions currently being used for aseismic designs. The shapes of the spectra in each region are shown to be different, and the envelope curve of the velocity response spectra of the largest earthquakes in each region is found to be lower than those of the design earthquake motions.

INTRODUCTION

The authors have conducted underground earthquake observations in the center of Tokyo since 1972, in order to determine typical earthquake motions which should be considered in the aseismic design of structures built in Tokyo. The observation stations were Uchisaiwai-cho in Chiyoda-ward, Toyosu and Etchujima in Koto-ward, and Shibaura in Minato-ward. At Shibaura, we have collected and digitized 44 earthquake records which occurred between July 1976 and December 1980 and at Etchujima, 129 earthquake records which occurred between October 1982 and May 1988. These data show a wide variation in seismic magnitude, hypocentral distance and focal regions. After we had compared the maximum accelerations, maximum velocities and response spectra of the earthquake motions collected at these different stations, it became clear that the earthquake motions observed in the mud stone layer with an S wave velocity of about 500 m/s are not much affected by the surface layer, and that we can consider that layer as the common base-layer in the center of Tokyo (Ref. 1).

OUTLINE OF OBSERVED DATA AND FOCAL REGIONS

The accelerograms used in this analysis were collected in the lowlands of Tokyo, at GL-60m in Shibaura and at GL-100m in Etchujima. These two stations are about 3.7km apart. The soil profiles of both stations are shown in Fig.1. The observation points are located in the mud stone layer with an S wave velocity of about 500m/s, which is generally used as a bearing stratum for high-rise buildings in Tokyo. 173 earthquake records have been collected at both stations. As has already been noted, the maximum amplitude or spectral characteristics of
Table 1 Focal Regions and Earthquake Data Used in This Analysis

<table>
<thead>
<tr>
<th>No.</th>
<th>Focal Region</th>
<th>Mj</th>
<th>X (km)</th>
<th>X̄ (km)</th>
<th>Components Horiz. Vert.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N or Central Chiba Pref., E Tokyo Pref., N Tokyo Bay</td>
<td>4.0-6.1</td>
<td>60-100</td>
<td>78</td>
<td>55 24</td>
</tr>
<tr>
<td>2</td>
<td>SW or S Ibaragi Pref., Saitama chiba Border Region</td>
<td>4.2-6.0</td>
<td>68--99</td>
<td>82</td>
<td>45 22</td>
</tr>
<tr>
<td>3</td>
<td>Central Kanagawa Pref., E Yamanaashi Pref., Central Saitama Pref., Kanagawa Yamanaashi Border Region</td>
<td>4.4-6.0</td>
<td>59--82</td>
<td>70</td>
<td>10 5</td>
</tr>
<tr>
<td>4</td>
<td>E off Ibaragi Pref., E off Fukushima Pref.</td>
<td>5.0-5.9</td>
<td>133-206</td>
<td>166</td>
<td>24 -</td>
</tr>
<tr>
<td>5</td>
<td>N or W Nagano Pref.</td>
<td>5.6-6.8</td>
<td>198-211</td>
<td>205</td>
<td>8 -</td>
</tr>
<tr>
<td>6</td>
<td>Near Miyakejima Island</td>
<td>5.3-6.4</td>
<td>188-216</td>
<td>203</td>
<td>6 -</td>
</tr>
<tr>
<td>7</td>
<td>Around Izu Peninsula</td>
<td>5.5-7.0</td>
<td>95-130</td>
<td>114</td>
<td>12 -</td>
</tr>
<tr>
<td>8</td>
<td>SE off Boso Peninsula, E off Chiba Pref.</td>
<td>5.0-6.7</td>
<td>83-163</td>
<td>124</td>
<td>20 -</td>
</tr>
</tbody>
</table>

Fig.1 Soil Profiles of SHIBAURA and ETCHUJIMA (in Tokyo)

Fig.2 Epicenters of Earthquakes and Focal Regions (Numbers in this map correspond to those of focal regions as shown in Table 1)
earthquake motions in a classified focal region are similar (Ref. 2).

In this study, in order to consider the aseismic design of structures built in Tokyo, we chose the earthquake motions which occurred within an epicentral distance of about 200 km, classified them into eight focal clusters as shown in Fig. 2, and investigated the characteristics of the velocity response spectra, S_v, of each region. 180 horizontal components of ground motion from 92 earthquakes and 51 vertical components from 51 earthquakes were selected for this study. Table 1 shows the seismic magnitudes, hypocentral distances and the number of components of the earthquakes in each region. Region 1 is the nearest to Tokyo, of the so-called just-under-seated type. Regions 2 and 3 are inland, and within 100 km of Tokyo. Regions 4 to 8 are farther away from Tokyo. Fig. 3 shows the relationship between the epicentral distances and the focal depths of the earthquakes used in this analysis. The earthquakes in region 1 are located at relatively deep points, almost directly below the measuring stations. On the other hand the earthquakes in regions 5 to 7 are shallower and almost horizontal.

CHARACTERISTICS OF HORIZONTAL SPECTRA

The velocity response spectra, S_v, for horizontal motions were calculated in the period range 0.1–10.0 seconds with a damping ratio, h, of 0.05. Responses were also calculated for the whole recorded duration, in order to estimate the effect of earthquake motions on structures.

Mean Response Spectra Fig. 4 shows the mean velocity response spectra of each region, which are normalized using the spectral intensity (period 0.1–2.5 seconds, $h=0.05$). Clearly, the shapes of the S_v can be divided roughly into two groups. The spectra of the northern and western parts of Nagano prefecture (region 5), the area near Miyakejima Island (region 6) and the area around the Izu Peninsula (region 7), whose focal depths are relatively shallow and whose predominant periods are rather long, are similar but differ from the spectra of the other five regions. In order to investigate the characteristics of spectra whose shapes differ from region to region, it is necessary to regress S_v for each region, or to introduce new parameters which demonstrate the differences between the characteristics.

Regression of the Velocity Response Spectra As the focal regions can be roughly divided into two groups, we first estimated S_v of these two groups using the multiple regression analysis. Group A consists of the regions 1 to 4 and 8, and includes 154 components from 75 earthquakes. Group B consists of the regions 5, 6 and 7, whose predominant periods are rather long, and includes 26 components from 17 earthquakes. The well known regression formula used in this analysis is as follows:

$$\log S_v(T) = a(T) M + b(T) \log X + c(T)$$

(1)
where \(a(T), b(T), c(T) \) : partial regression coefficients with regard to
the seismic magnitude \(M \), the hypocentral
distance \(x \), the residual respectively

\(S_v(T) \) : regressed velocity response spectrum

From the results, \(a(T) \) of both groups, with regard to \(M \) are distributed in
the range 0.5-1.0. The multiple correlation coefficient of Group A is greater
than 0.7 for periods longer than 0.3 second, and that of Group B is generally
over 0.7 for the whole period range.

Figs. 5(1)-(2) show the results of multiple regression analyses of \(S_v \) for
these two groups. The results for Group A, with an \(S_v \) of M5,6,7 and an epicentral
distance of 50km (broken lines), and with an \(S_v \) of M6,7,8 and an epicentral
distance of 100km (solid lines) are shown in Fig. 5(1). The results for Group B,
with an \(S_v \) of M6,7,8 and an epicentral distance of 100km are shown in Fig.5(2),
where earthquakes with epicentral distances less than 100km are not included in
this group. It is clear from Figs.5(1)-(2) that the shapes of the spectra of
these two groups are different. The spectra of Group A are superior in the
period range 0.1-4 seconds, and those of Group B are superior in the period
range 4-10 seconds. Thus the period characteristics and the spectral amplitudes
for each group should be treated separately in the aseismic design of buildings.

Regression of \(S_v \) for Each Region

In order to investigate the characteristics
of \(S_v \) in detail, we regressed \(S_v \) for each of the eight regions. The velocity
response spectra for the largest earthquake in each of the regions were estimat-
ed using the magnitude of largest historical earthquakes in the region. Table 2
shows the magnitudes and the name of the large earthquakes used in this analy-
sis. The great Kanto Earthquakes in 1703(M7.9-8.2) and 1923(M7.9) were excluded
as they exceed the permissible range of extrapolation from observed data. The
results are shown in Fig.6. Every spectrum is different and shows the character-
istics of each region. The envelope curve is similar to the spectrum of M8.0
with an \(x \) of 100km in Group A, as shown in Fig.5(1). In the period range 0.5-3
seconds, the earthquake with an \(S_v \) of M7.2 in region 2(Ibaragi prefecture) is the
largest, and in the range 8-10 seconds, that with an \(S_v \) of M7.3 in region
7(around the Izu Peninsula) is larger than the other spectra.

The envelope curve of the \(S_v \) was then compared with the \(S_v \) of design
earthquake motions currently being used for aseismic design (e.g. EL CENTRO
1940). The results are shown in Fig.7. The design earthquake motions were
normalized to a max. of 50cm/s, they are often
used for elasto-plastic response analysis of high
rise buildings in Japan. The spectra for the large
historical earthquakes are lower than those used
for design, and is equivalent to the \(S_v \) normal-
ized to a max. of 25cm/s, which are used for elas-
tic analysis.

<table>
<thead>
<tr>
<th>Region No.</th>
<th>Origin Date</th>
<th>Earthquake Name</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1</td>
<td>1855.11.11</td>
<td>The Edo Earthquake</td>
<td>7.0</td>
</tr>
<tr>
<td>Region 2</td>
<td>1895.11.18</td>
<td></td>
<td>7.2</td>
</tr>
<tr>
<td>Region 3</td>
<td>1924.1.15</td>
<td>An Aftershock of the Great Kanto Earthquake</td>
<td>7.3</td>
</tr>
<tr>
<td>Region 4</td>
<td>1938.11.5</td>
<td>The Fukushima-Ken-Toho-Oki Earthquake</td>
<td>7.5</td>
</tr>
<tr>
<td>Region 7</td>
<td>1930.11.26</td>
<td>The Kita-Izu Earthquake</td>
<td>7.3</td>
</tr>
<tr>
<td>Region 8</td>
<td>1923.9.2</td>
<td>An Aftershock of the Great Kanto Earthquake</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Table 2 The Largest Historical Earthquake in Each Region

CHARACTERISTICS OF VERTICAL SPECTRA

The characteristics of vertical motions were investigated for the focal
regions 1,2 and 3, whose epicentral distances are within 100km of Tokyo. The \(S_v \)
for vertical motions were calculated in the period range 0.05-5.0 seconds with a
damping ratio, \(h \), of 0.05.

Figs. 8(1)-(3) show the regressed vertical \(S_v \) of M5,6,7 at the average
epicentral distance of each region. The horizontal S_v are also shown in these figures using broken lines. Generally, the vertical S_v of region 2 are larger than those of the other two regions, but in the period range 0.05-0.5 seconds, the S_v of region 1 are larger. The amplitudes of the vertical S_v are generally half to one-thirds of those of the horizontal S_v, and the differences are larger for periods longer than 1 second. For focal region 3, the amplitudes of the vertical S_v are almost as large as those of the horizontal S_v in the period range 0.5-1 seconds, and it is evident from this figure that we cannot neglect the vertical motions.

Therefore, study of the vertical components of earthquake motions should be an important factor, when considering the vertical responses of high-rise buildings or long-spanned slabs.

CONCLUSION

Classifying earthquakes into focal regions and estimating the velocity response spectra, S_v, for the largest earthquake in each of the regions, were found to be effective in determining typical earthquake motions for the aseismic design of buildings. In addition, study of the vertical components of earthquake motions was found to be an important factor when considering aseismic design.

ACKNOWLEDGMENTS

We would like to thank Dr. Teiji Tanaka of Osaki Research Institute for his helpful suggestions and observations, and also Mr. Shun'ichi Kataoka of the Research Institute of Technology of Shimizu Corporation for his help with the earthquake observations.

Fig. 4 The Mean Velocity Response Spectra for Each of the Eight Focal Regions

Fig. 5 Regression Results for Group A and B
REFERENCES