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SUMMARY

A closed form solution for the equation of motion of a soil layer having
a linear variation of the Vs profile versus depth, is obtained, assuming
vertically propagating shear waves. The aforesaid characteristic represents
very well real situations on alluvium deposits. A mathematical expression of
the amplification function between an homogeneus halfspace and the surface of
the soil layer, having the above mentioned characteristic, is determined.
Through such expression sensitivity analyses of key parameters can be
performed. Finally a comparison between analytical and numerical solution is
presented.

INTRODUCTION

The evaluation of the seismic ground motion, expected at the free field
surface during an earthquake, is one of the most important step in the seismic
design of critical structures (major hazard industrial plants, long span
bridges, dams, offshore platform, etc.), in seismic microzonation and in
liquefaction analyses. The proposed characteristics of the seismic motion at a
site (amplitude frequency content, duration) should be consistent with the
seismotectonic enviroment - that is the source mechanism and the wave
propagation path - and with the local soil condition. This last is often the
most important and a key parameter in order to evaluate the motion at the free
field surface at a specific site. The phenomenon is well known and can be
studied through the amplification function. The amplification function is the
ratio between the amplitude of the motion at the surface of a soil layer over
an halfspace and the amplitude of the motion that would occur on an
hypothetical outcropping of the same halfspace (Fig. 1). The amplification
function of a soil layer is strictly correlated to the variation of the shear
wave velocity versus depth (Vs profile). In many cases alluvium deposits are
characterized by a Vs profile that can be well described by a linear variation
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versus depth. Assuming an elastic medium with a linear Vs profile and the
simplified hypothesis of vertically propagating shear waves, an analytical
solution for the amplification function can be obtained. A closed form
solution allows both an easy programming an a personal computer and
sensitivity analyses about the influence of the parameters governing the soil

amplification phenomenon.

SOLUTION OF THE DYNAMIC EQUILIBRIUM EQUATION

Let's assume a soil layer of depth H, resting over an halfspace (elastic

rock), as indicated in Fig. 2, and a vertically propagation of the shear
waves. The dynamic equilibrium equation for the soil element shown in Fig. 2
is:

b( DU(ZT) = UG (1)

3z ot

where G is the shear modulus.,2 function of the soil mass density §4 and the
shear wave velocity Vs (G=¢ \/5) and |(zt) is the horizontal displacement.
Assuming f:costant, Vs varying linearly according to:

Viz= Vie (1+X2Z/H) (2)

(being Vso the shear wave velocity at the surface), and a steady state armonic

motion:
wt

Uzt ul@) 2
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S = =W U.t)
where w is the circular frequency of the vertically propagating shear waves,
the equation (1) can be written:

dw N d u
d 7 d
where:)/:(w/\/,o)H/,'{, r=1n(1+Xz/H)

the solution of equation (4) is:

it "
(A: P A, 277)//“12/“ (5)

with: p=\/yZ 14

In equation (5) the first member represents the vertically travelling up
wave, the second one is the coming back wave. The amplitude of both waves is
not costant with depth - as in the case of Vs=costant - but descreases
according to the square root of 1+) z/H. Assigning the boundary condition,

(3)

+y'u =0 (4)
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that is the shear stresses equal to zero at the surface and the relative
displacements equal to zero at the boundary between the layer and the
halfspace, the following trascendental equation can be written:

o = 20 /7 (6)

with o= PU T4 = an‘M)
Taking into account the definitions given for p andzy , the vibration
modes are obtained from equations (6) and (5):

Un= 4 (cos(fﬁ7)+ A Sin(Pn'Z» (7)

V A+ A z/H 1fn

while the natural frequencies can be well approximated by:

— - V_so l
o= (201) 4H 2 In(1en) (H

Parametric analyses, performed in order to compare equation (8) with the
exact solution -~ obtained from equation (6) - have shown that the error is
lover than 10%, even for high values of X , namely \ =5.

(8)

SOIL AMPLIFICATION

The solution (5) of the dynamic equilibrium equation, taking into account
the boundary conditions, gives the motion for the soil layer:

-2+ P ~1/2 -1 P%

) Lwt
Uzt = A [2 + 4 (a?-m)/(tpw/z)} 2 (9)

Assuming vertically propagating shear waves with a costant velocity equal
to Vsh, the solution of the dynamic equilibrium equation for the halfspace is,
as well known /1/,

iwz/Va . -iwz/Vsh lwt

U = Ah(l + An 2 )i (10)

Assigning the congruency between the displacements and the shear stresses
at the interface between the soil layer and the halfspace, it is possible to
evaluate the amplitude of the travelling up (Ah) and the coming back (dh)
waves in the halfspace as a function of the amplitude of the waves in the soil
layer. Finally, considering that at the outcropping halfspace A'h=Ah, the
amplification function can be expressed in modulus, as:

IAFIZ AER = (1)
\/(cos(?’lc)+ sin(pe) /29 )t + (Qo(“l)/)’“"’”(?’l)/?)
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where qo= Vso/_j’thh is the impe dance ratio and)?h is the mass density of
the halfspace. Equation (11) doesn't take into account the material damping of
the soil. If the material damping D is introduced considering a complex
expression for the shear modulus:

G'=( (1+2iD) (12)

for small values of the material damping (D<«1), the following approximated
expression for the amplification function is obtained from equation (11):

IAFI‘ i+ A
: cosh}g\/gf’.,_ Is

2
Rg:cas¢+5i/n,u./2?+l'zgcf;—‘§ﬂi—? - q°)’%/l (‘“"‘ {"?“P =D sin “)

(13)

Tm=sind 1’34,34,2%(9 f;swcc ~cosd %hﬁ)+ qo(}’—'? (ﬂﬂwmi %hﬁ)
B=ou =L A= PU

For low frequencies and small material damping (& D<1) the equation (13)
can be semplified, assuming cosh B =1 and @hf=# :

YE Y -2

: : ; - 14
/(cosu " ;—"-:i)i_ (qoxsmt i;,l)ipqﬂkf;—l (22 - Simats ‘%“—:‘;l) (14)

Figure 3 shows the comparison between equation (13), (14) and a numerical
solution (Shake code /2/), applied at the same test case. No differences
pratically exist, betweeen equation (13) and Shake solution, while the
approximation of the equation (14) decreases as the frequency increases (that
is when the hypothesis o/ D < 1 is less effective). The maximum values of |AF|
are obtained at the natural frequencies given by equation (6):

-1

IAFLW S /«13 (1+12) + 22 9o fn T (15)
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While the minimum values can be approximated, assigning cosg=1 and sena

lAF‘m: /i+ A /\/4+2qu3/,¢?4 (16)

If D=0, |AF| min is always greater that one when the shear wave velocity
increases with depth (A #0), while it is always equal to one when the shear
wave velocity is costant with depth (X =0). Figure 4 shows the comparison
between a soil layer with material damping and Vs linearly increasing and a
""dynamic-equivalente layer' with the same damping, the first natural frequency
but Vs=costant. It is the wothwhile to note that the maximum and the minimun
values of the amplification function of the soil layer are always greater than
those obtained for the amplification function of the "dynamic-equivalent
layer". It can be concluded that when the shear wave velocity increases versus
depth, the wave amplitude decreases and the radiation damping effect is less
than in the case of Vs=costant.

=0:

CONCLUSION

Alluvium deposits are, in many cases, well characterized by a linear
variation of the shear wave velocity versus depth. The amplification function
between an outcropping halfspace and the surface of a soil layer, resting over
the halfspace and with Vs linearly increasing, can be obtained in a closed
form solution, performing a transformation of the spatial coordinate of the
dynamic equilibrium equation. As a consequence of the elastic non-homogeneity,
the shear wave amplitude decreases propagating away from the surface. The
amplification function shows a reduced effect of th radiation damping, if the
non-homogeneous soil layer is compared with an homogeneous dynamic-equivalent
layer. The simplified assumption of an homogeneous layer over an halfspace can
lead, in many cases, to unconservative results in evaluating the seismic
ground motion at a specific site. The proposed closed form solutions for the
amplification function and for the natural frequencies of a soil layer with a
linearly increasing Vs-profile seem to be more appropriate and equally
easy-to-use dealing with soil amplification problems (design of critical
structures, seismic microzonation liquefaction analyses).

REFERENCES

1. Roeset, J.M., Soil amplification of earthquakes, Numerical methods in
geotechnical engineering, edited by Desay and Cristian, Mc Graw H.U.,
1977.

2. Schnabel, P.B., Lysmer, J., Seed, H.B. SHAKE: a computer program for
earthquake response analysis of horizontally layered sites, Univ. Calif.
rep. EERC 72-12, Berkeley, December 1972.

I1-421



Lol

L

£7RN

QUTCROPPING
HALFSPACE

L

7N
—>T=6 %ﬁ?
z E
T+ dT

HALFSPACE

Fig. 1 - The soil amplification problem
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Fig. 3 - Comparison between Shake
solution, eq. 13 and eq. 14
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Fig. 2 -~ The soil layer over the
halfspace
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Fig. 4 - Comparison between Vs
linearly increasing (+) and Vs
costant (-)
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