COMBINING EXPERT OPINIONS FOR DECISION MAKING

E Rosenblueth (I)

SUMMARY

Some uncertainty is inevitable about the validity of all opinoms.
The treatment that each opinon deserves depends on our prior probability
about the phenomena of interest and about the bias and expertise of the
corresponding participant. These, together with the opinions stated, fur-
nish posterior probabilities through application of Bayes' theorem. The
results allow updating the credibilities of the participants. The same
approach holds for calculating the parameters of probability distributions
as well as the probabilities of utilities. The approach is applied to sev-
eral problems in earthquake engineering.

INTRODUCTION

Rational decision making involves assigning probabilities and utili-
ties and choosing the option with maximum utility. A set of independent
opinions is never less valuable than any member of the set. (This is not
necessarily true of statements by committee members.) To get their full
value the statements must be properly combined. Intuitive treatments,
such as weighted averages — whether outliers are discarded or not — can
seriously mislead. This paper develops bayesian methods for combining in-
dependent statements. (A precedent is found in ref 1.)

We work out two kinds of formulation. One applies to qualitative
statements of opinions about variables that can only take up a small num-
ber of values; the second one applies to probability distributions and
can be adapted to a treatment of probabilities or utilities. These meth-
ods are well suited for use to conjunction with some informal techniques,
such as Delphi, in which the interaction of experts is conveniently dealt
with.

The methods are applicable to opinions in the cootext of earthquake
engineering, especially in the realm of variables that go into public po-
licy making. They are illustrated accordingly.

PROBLEM FORMULATION FOR INDEPENDENT STATEMENTS

Let Hy, k = 1, 2,..., N be exhaustive, mutually exclusive hypotheses.
Out of n witnesses, nj state that Hj is true and n-nj that it is not, so

'Zl n. = n. We seek to compute the posterior probability P; that each of
=1

the Hg be true given the prior probabilities Py and statements which may
be true, erroneous, mistaken, or insincere. We assume that the statements

are mutually independent except where defined otherwise.

(I) Instituto de Ingenieria, Universidad Nacional Autdnoma de México; Vi-
siting Professor, University of Waterloo.
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SOLUTION

Let Q1 x be the probability that witness i says that hypothesis HJ is
true when Hk is true and let prime and double prime denote quantities as-
signed before and after knowledge of the statements respectively. From
Bayes' theorem (concepts of probability and bayesian statistics are found
in any standard text on the subject, such as ref 2) we find

n
Py = Pﬁ i=1 Qljk o)
k N n
z'z=1P’1 i=1 ij
If we wish to update Q;., we must recognize at least two situationms.

In one, for a given subject, J Qljk and Qjjp are independent of each other
if k # h. In the second situation Qijh — the probability that the subject
be truthful — is independent of j. In the first situation

= Q;

Q) + (- QR @ + D) @)

ijk ijk

In the second situation we write Q; for Qijj and ni for nik and we obtain
LI ] ' n \
Q) = (njQ; + Pj)/(ni + 1) (3)
where j corresponds to the hypothesis which the subject said was true.

Parameter n!, measures our prior intensity of conviction. It admits
a heuristic inte%pretation in terms of the following fictitious experiment,
prior to the real experiment. We know that Hp is true. We ask subject i
n;, times which is the correct hypothesis. On n} Qle occasions he answers
Hj. Now we perform the real experiment, know1ng that the correct hypothe-
sis is again Hy, and again he answers Hy. Since we deal with a Bernoulli
process the new expected fraction of the number of times in which 1 will
say Hj will be ngk = (ni 1Jk + 1)/ (n! ik + 1). If however, Hk is not true

in the real experiment, we have no ba31s in the first situation for up-
dating and distribution and so Qg-k = Qi'k The probability that Hy be
true in the real experiment is Py while it is 1 - P!' that it be false.

Multiplying the first expression for Qle by Py and the second one by
1 - Pk and adding we arrive at eq 2. Notice that subscript j corresponds
to the hypothesis H; that each subject claimed was true when Hy was true.

In the second situation, if Hy were false the updated Q; would be n;/Qi/nj
+ 1); the probability that Hy be false is 1 - Pj; hence eq 3.

PROBABILITY DISTRIBUTIONS

Assume that n witnesses report the values x;, i = 1, 2,..., n for
random variable X, which can be the measured or estimated value of a quan-
tity x. Each reported value can be true (valid) or the result of a deceit,
error, mistake, or bias. Every X5 is the value of a specimen of a variable
having some probability of possessing each of two or more probability
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distributions. Suppose there are only two populationms: that of the true
values, Y and that of the false ones, Z and that the ¥; are statistically

1ndependent. Let Q11 -.1) denote the probability that Xips Eipy eoes

xlkeY, pY( +) denote the probability density functions of Y and Z, and Py ()

and Pz(-) denote the corresponding distribution functions. From Bayes'
theorem

n
PU(x) = I ZQY . PU(x|x: ...x.) 4)
Y k=0 11...1k Y 11

Q¥ o= Q L. (1 -Q) ). (- d)pdx. ...x )Pl (x. ...x, )/D
11...1k 11 lk lk+1 1n Y 1k xlk PZ x1k+l xln)

Pa(x, ...x. ) = pi(x. |x. x. ...x. )p'(x. |x. ...x. )...p" (x. [x. Ypi(x.)
Y i, i Y 1,771,714 i Y i, 71, i, Y 1 I Y i

and there is a similar expression for PZ(x1k+l .xln). The second sum in

eq 4 covers all combinations of n data taken k at a time. D is the sum of
all terms having the form of the numerator in the expression for le‘--ik'

The posterior distribution of true values is thus a linear combination of
2% posterior distributions, each obtained from Bayes' theorem.

We may face one of two important situations. Either Y actually varies
from one specimen to another and there is no uniquely true value (as with
solil properties say, which vary from point to point within a soil forma-
tion) or there is such a unique value and the difference between one true
%; and that value is due to experimental or observational error (as with
reported earthquake magnitudes: there is only one true magnitude but each
station that reports will give a different magnitude). Errors contained
in the true xj do not include 'human" or 'gross errors'" or mistakes.
(There are other situations of practical interest in which we will not
delve. For instance the actual value of a material property can vary from
one specimen to another and the spread in valid data can reflect this va-
riation plus the one due to experimental errors.) In the first case we
are often interested in the distribution of Y, but when there is a unique-
ly true value, only its distribution is of interest and it can be obtained
from relations between this value and the parameters of Py(-) For design
purposes it may be unnecessary to deal with P 7(-) directly as it is often
some property of this distribution (such as a utlllty obtained from the
convolution of the probability distribution of Y and that of another va-
riable) that is of interest and can be obtained as a linear combination of
the values corresponding to the conditional distributions P;Z'(xlxil...xik .

When n = 1 eq 4 takes a simple form:
Py(x) = "P”(Xlx )+ (1 - QPDPy(x) %)

= [1+ (/) - Dpyx /o]
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The case in which Y and Z are gaussian deserves special attention be-
cause situations abound in which this assumption is reasonable and because
every continuous variable having a continuous distribution characterized
by no more than two parameters can be transformed into a gaussian variable.
Suppose then that Y and Z are gaussian and, further, that they have unknown
process means and known process variances. Then using the natural conju-
gate distribution of the mean’? we can write, for the process Y= N(u . G )
and for the prior, My = N(mY 2/nY) where né is a parameter that measures

our prior certainty about m§ and heuristically can be regarded as the num-
ber of specimens in a fictitious prlor experlment The prior bayesian

distribution of Y is described by ¥'d N[ , UY(l + 1/n!)| and its poste-

rior bayesian distribution by Y" = N|my, UY(l + 1/n] Z] where my = (ngmo +
nYmY)/nY nY nY Dy, My = sample average, and ny = number of data in

the sample (in our case n, = k). Similar expressions hold for Z (nZ= n- k).

Often when there is a unique true-value of Y this 1s the process mean.
Its posterior distribution is described by u N(mY, nY

When n > 0 and Q! < 1 for at least one i, P{y(x) cannot, in general,
be normal, nor can in general the posterior distfibution of U,. Each,
however, is the linear combination of normal distributions and the perti-
nent properties of Y and of U, can be obtained with as much simplicity for
each term as though the problem of credibility were absent.

The problem can be modified so that each witness has some probability
of belonging to one of several groups, and each group its own tendency to
under or overestimate the variable of interest. The expressions required
for computing posterior expectations and variances are readily derived.

APPLICATIONS

Example 1.1 We will try to assess the intensity of a given earthquake at
a certain site on the basis of an expert witness' account. From previous
experience with earthquakes of the magnitude in question at sites of simi-
lar ground conditions we are sure that the intensity in which we are inte-
rested is either V or VI. We thus have N = 2, n = 1. We will assume that
Qijk depends on k and that Qjjp is independent of Qijk if h # k.

Before sending the expert to the site we have fictitiously calibrated
him (we have looked at his record of assessments and at those of special-—
ists having a comparable experience) as follows: we show him eight sites
where the intensity was V; we record that he correctly classifies the in-
tensity as V on six occasions and he states that it is VI in the other two.
Next we take him to two sites where the intensity was VI; we note that he
estimates the intensity as V at one site and VI at the second one. Hence

nil 8, nl2 2, Qill = 0.75, Qi22 = 0.5. Using eq 1 and PE + Pg =1 we
get
" = - " " = -
Q7;q = 0.750 = 0.028P1 > Q,p =1 Qlll
" = - " " = - n
Qilz 0.500 - 0. 167Pl R Q:L,)2 1 Q112
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The expert says that the intensity was V. If experience with similar
seismic and site conditions points to equal probabilities that the inten~
sity be V or VI we have P' = 0.5. Replacing Pl’ Q! 11° and Q! 112 in eq 1
we get P; = 0.600. On the other hand had we begun1w1th Pi 1O 667 for in-
tensity V we would have arrived at PY = 0.750 as the probability that the
intensity at the site of interest was V. According to the foregoing ex-
pression for the updated Q;iis, if P] = 0.5 the expert now has a probabil-
ity of 0.767 of stating tha% an earthquake of intensity V has indeed this
intensity, of 0.233 of assigning it intensity VI, and a probability of
0.600 of assigning intensity VI to an earthquake of intensity VI. if P! =
0.667 these probabilities are respectively 0.771, 0.229, and 0.650. 1

Example 1.2 Using the data in the foregoing imaginary experiment let us
solve the same example but assuming that there is no bias on the part of

the witness, so Q1 = oill Q122 is the prior probablllty that the assess-

ment is correct whatever the intensity. In this case nl 8 + 2 = 10,

Qi = (6 + 1)/10 = 0.7. Now QI = (7 + P"/ll) From eq 1 the assumption
Pi = 0.5 gives P¥ 0.700 while P‘ 0. 667 yields PY = 0.824. We notice a

significant increase with respect to example 1.1 in the probability that
the site intensity was V. This we can attribute to a decrease in the pro-
bability that the assessment was incorrect. The updated credibility we
would assign the subject is Q = 0.700 for Pi = 0.5, and 0.711 when Pi =
0.667.

Example 2.1 One witness states that the intensity was V and all the rest
that it was VI; N = 2. We take n;=1landny =n - 1. Suppose that Qijk

and Qi'h are independent of each other if k # h, that for all i Qill =

Q. 9 = 0.9, Qilz = 0.1 (that is, all witnesses are equally trustworthy and
the likelihood that any one of them makes a correct statement is nine
times that of an incorrect statement), that nil = niz is independent of i
(we are equally sure of our assessments about all the witnesses' exper-
tise), and that P! = Pé (we are completely ignorant as to whether the in-
tensity was V or VI). The solution is straightforward using eqs 1 and 2.

Results are depicted in the first of each pair of lines of table 1. We

can appreciate the sensitivity of Pg to n and that of QY 111 to nil and to

n. With n = 2 the witness accounts are not informative in this case be-
cause we have taken Pi Pé and Qlll Q£22 . Had a single subject pro-
vided all the statements, each one corresponding, say, to his examination
of one square block in the city, we would have updated Qijk using eq 5.

Example 2.2 Take the data and prior convictions in example 2.1 but sup-
Pose that Qle is independent of j. Applying eq 3 we find the updated va-
lues in the second of each pair of lines in table 1. lefergnces w1th re-
sults in example 2.1 are spectacular for large n and small nj; or nl. If
one subject had made all the assessments we would have used eq & 5 to up-

date Ql'
Example 3.1 Analysis and measurement of the fundamental period of vibra-

tion of several nominally identical structures has led to a prior gaussian
probability distribution of the variable such that m% =1s, UY = .1l s,
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ny = 4. One more structure of this type is tested and a period T, is re-
ported. There is doubt as to the validity of this report but essentially
none about the prev1ous measurements The follow1ng parameters are as-
signed, my = I s, o5(1 + 1/nz)/GY(l + I/ny) = 2. Bayesian distributions
of the fundamental perlod appear in fig 1 on normal probability paper.

Example 3.2 Data in example 3.1 refer now in appropriate units to the
strength of a certain type of structural member. Find the design
strengths associated with different probabilities that they not be met.
Results in fig 2 were obtained from fig 1. Beyond some values of Tl a de-
crease in this value brings about an increase in the design strength. The
paradox is due to a decrease in the probability that T; be valid. Suppose
now we are asked to find the optimum central safety factor for members of
this type under the assumption that if through design we multiply the ex-
pected strength ET by some factor ¢ then 0T will have the distribution
that T had; we are given the probability distribution of the load and its
recurrence periods as well as the disutility associated with the initial
cost as a function of @ and that of the loss in case of failure. Under
the assumption that utilities are additive we compute the present value of
the disutility as a function of 0j first as though Ty were a false value
and multiply it by 1 - QY, and then as though it were true and multiply
this by =~ Qj. Finally we add these two to the disutility associated
with the initial cost and we find that & which minimizes the total.

Example 3.3 Four stations report the magnitude of an earthquake as Xy =
6.2, 6.2, 6.8, and 7.2. From the area over which the phenomenon was felt,

reported intensities, and other indirect evidence we expected a magnitude
of 6.4. We assign this prior magnitude a gaussian distribution with
standard deviation of 4.4 and assume that stations which correctly inter-
pret their records have a standard deviation of .2 relative to the true
value. Thus my = 6.4, GY = .2, ny = .25. We further take Qf = .9 for all
i, mi = my, Oy = 20y, nz = ny. From eq 4 we get 16 gaussian distributions
whose linear combination furnishes the posterior of the magnitude, taken
to be the expected Uy of the true reported values Y. The fact that X =
Xy reduces the number of distributions to 12. Table 2 displays values of

Q; i of the expected Uy s which is m¥ and of the standard deviation

of Wy, which is GY//nQ. The probabilities QV i for the three most

probable distributions add up to 99.1. The case in which only X, were
true also merits consideration because of its large my and GY//nY, save
when very low probabilities of exceedance were of interest.

ACKNOWLEDGEMENTS

I am indebted to Luis Esteva for his critical constructive comments
and to Carlos Ferregut for computational support.

REFERENCES

1. Pearl, J, "A framework for processing value judgements', IEEE Trans-
actions on Systems, Man and Cybernetics, SMC-7, 5, 1977.5, 349-55.

890



Larson, H L, Introduction to probability theory and statistical infe-
rence, 2nd ed, John Wiley & Sons, New York, 1974.

Rosenblueth, E, "Procesamiento de informacidn dudosa: teoria general,
Instituto de Ingenieria, Universidad Nacional Auténoma de México, in
press; "On the processing of doubtful information: Part 1: general
theory", Solid Mechanics Division, University of Waterloo, in press.

Table 1 Posterior probabilities in examples 2.1 and 2.2

i or Q'!
PE 111 1 Example
n! =0 1 2 5 )
i

9000 .9900 .9430 .9300 .9150 .9000 2.1
: .9000 .9000 .9000 .9000 .9000 2.2

5000 .9500 .9250 .9167 .9083 .9000 2.1
: .5000 . 7000 L7667 .8333 .9000 2.2

1000 .9100 .9050 .9033 .9017 .9000 2.1
: .1000 .5000 .6333 L7667 .9000 2.2

0122 .9012 .9006 .9004 .9002 .9000 2.1
' .0122 L4561 L6041 .7520 .9000 2.2

0014 .9001 .9001 .9000 .9000 .9000 2.1
. .0014 L4507 .6005 .7502 .9000 2.2

Table 2 Component distributions in example 3.3

1: x;ev G ...1 Ty oy/¥n
1 n

- .000025 6.4000 .4000

1 or 2 .002988 6.2400 .1789

3 .000775 6.7200 .1789

4 .003539 7.0400 .1789

1,2 .856791 6.2222 .1333

1,3 or 2,3 .001407 6.4889 .1333

1,4 or 2,4 .000003 6.6667 .1333

3,4 .108941 6.9333 .1333

1,2,3 | .025529 6.4000 .1109

1,2,6 | 2 x 1077 6.5231 .1109

1,3,4 or 2,3,4 | .000001 6.7077 .1109

1,2,3,4 10-° 6.5882 .0970
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