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SUMMARY

The internal forces in uniform and tapered intake-outlet towers induced
by earthquake ground motion, characterized by a smooth design spectrum, are
computed for a range of fundamental vibration period by modal analysis and by
the Montes-Rosenblueth procedure. Based on these results it is shown that the
latter procedure is excessively conservative in many cases. The limitations
of other available simplified analysis procedures, and the requirements for a
reliable but simple analysis procedure for preliminary design of towers are
identified.

INTRODUCTION

Intake-outlet towers should be designed to elastically resist the rela-
tively frequent moderate intensity earthquakes; and may be permitted to yield
significantly, but without collapse, in the event that very intense ground
shaking occurs. An approximate analysis procedure that considers only the
most important effects in the earthquake response of towers, and yet is simple
to apply, is required in the preliminary stages of elastic design. The avail-
able simplified analysis procedures (Refs. 1-3) are evaluated in this paper.

VIRTUAL MASS OF TOWER

It has been established that the effects of surrounding water (Fig. 1) on
dynamics of towers may be approximately represented by the added mass shown in
Fig. 2 (Ref. 4). The virtual (or total) mass of the tower is

m(z) =mo(z)+mi(z)+ma(z) e))

in which mo(z) = the mass of the tower by itself, mi(z) = the mass of water in-
side the tower, and ma(z)= the added mass due to interaction with surrounding
water.

The added mass m_(z) presented in Fig. 2 is for cylindrical towers with a
circular cross-section for a range of values of the ratio ro/H, in which r =
the outside radius; and H= the depth of surrounding water. ~Strictly speaking
these results are valid only for towers with radius r constant over height;
however they are even useful for towers with a variable radius. It is recom-
mended that the added mass at any location, z, above the base be computed from
the curve for r /H=r (z)/H pertaining to that location. This simply obtained
approximate value checks well with accurate solutions based on a finite ele-
ment analysis of the fluid domains surrounding variable-radius towers (Ref. 5).
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The inside water is treated as moving rigidly with the tower, an appropriate
idealization for slender towers.

MODAL ANALYSIS

The earthquake analysis of a free-standing tower partially submerged in

water proceeds in the standard manner, with its mass defined by the virtual
mass m(z) instead of just its own mass mo(z). Thus, the maximum response of a
tower to earthquake ground motion can be estimated from the design (response)
spectrum corresponding to the ground motion by the following procedure:

1.

Define structural properties: compute virtual mass m(z) and flexural
stiffness EI(z); and estimate modal damping ratios En.

Compute the frequencies w_, periods T =27/w_, and mode shapes ¢n(z),11=l,
2,..., of several natural modes of vigration of the tower.

Compute the maximum response in individual modes of vibration by repeating
the following steps for the lower modes of vibration:

(a) Corresponding to period T_ and damping ratio & , read the ordinate
San of the pseudo-acceleration from the design spectrum.

(b) Compute equivalent lateral forces from
fn(Z) = (Ln/Mi) SanIH(Z)¢n(z) (2)
where Ln==fm(z)¢n(z)§z and M£==fm(z)¢n2(z)dz.

(c) Compute the shear Vn and moment M_ at any section by static analysis
of the tower subjected to the equivalent lateral forces:

HS HS
vV (2) =f £ (@dz 5 M (2) =f £ () (z-2)dg (3)
Z zZ

Determine an estimate of the maximum shear V(z) and moment M(z) at any
section by combining the modal maxima Un(z)-and Mn(z) in accordance with
the following equation:

ORI O N (CEN NI D) %)

MONTES-ROSENBLUETH PROCEDURE

This is a simplified analysis procedure developed by Montes and Rosen-

blueth for estimating earthquake forces in chimneys (Ref. 3). By using the
virtual mass m(z) to define the mass, the procedure can be applied to free-
standing intake-outlet towers in the following steps:

1.

Construct two envelopes of the design spectrum: (a) flat spectrum and (b)
hyperbolic spectrum with cut-off, as shown in Fig. 3. The ordinate of the
flat spectrum, which represents a constant pseudo-acceleration, is equal
to the maximum value over all periods less than the fundamental period Ty.
The hyperbolic spectrum, which represents pseudo-acceleration varying with
period as a hyperbola or a constant pseudo-velocity, passes through the
ordinate of the design spectrum at T,; the spectrum is cut-off to a flat
branch for all periods less than Tl/lO.
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2. Compute shears and moments in the tower associated with the flat spectrum
from the following equationms:

V(z) =O.647(§al/g)W[l— (z/HS)3} (5a)

M(z) =O.46l(§al/g)WHs[l- (z/HS)]3/2 (5b)

where S __ is the maximum value of S (T) over periods less than T, and W
is the %otal, virtual weight of the tower. !

3. Compute shears and moments in the tower corresponding to the hyperbolic
spectrum with cut-off from the following equations:

V(z) =1.553(s /&)W [1 - cz/Hsml/Z - 6.25(2/B)2[1 - (2/H)1%} (6a)
M(z) =0.519(S,,, /g)WH_[1-(z/2 )] (6b)

4. The M-R (Montes-Rosenblueth) estimate of the shear (and moment) at any
section is provided by the smaller of the two values for the shear (and
moment) obtained in steps 2 and 3 (Fig. 4).

The approximate expressions for shear and moment in steps 2 and 3 were ob-
tained in Ref. 3 from results of analysis of uniform towers for the two ideal-
ized spectra mentioned above. The M-R estimates are equal for two towers with
the same total weight, independent of the weight and stiffness distribution.

PRESENTATION AND DISCUSSION OF RESULTS

The two types of towers analyzed are: (a) Uniform towers with mass per
unit height m(z) =m and flexural stiffness EI(z) =EI, both constant over
height; and (b) tapered towers with mass and stiffness decreasing linearly
from the base (z=0) to the top (z=H) with m(H) =m(0)/9 and EI(H) = EI(0)/10.
The latter represents an extreme taper, more than usually encountered in real
towers, chosen to cover all practical cases and, in part, to indirectly and
roughly consider the variation in virtual mass that would be introduced by the
added mass (Fig. 2). TFor the limited objectives of this paper, it is not nec-
essary to explicitly include the added mass m_(z) and the virtual, total mass
m(z) is defined directly as described above.

_ The parameters selected for the ground motion are: maximum acceleration
a,, velocity v,, and displacement d,=1g, 48in/sec, and 36in., respectively.
Starting with these parameter values, the design spectrum is comstructed by
the procedures of Ref. 6 for 5% damping ratio and 84.1 percentile level of re-
sponse (Fig. 5). The response results are presented in dimensionless form so
that they are valid for ground motions of any intensity, provided Eé, ?é, and
dg are in the ratio 1g:48in/sec:36in.

The internal forces (shears and moments) in two types of towers induced
by earthquake ground motion characterized by the design spectrum of Fig. 5
were computed for a range of fundamental vibration periods by modal analysis
and by the Montes-Rosenblueth Procedure. The natural frequencies and mode
shapes of vibration required in modal analysis are available in text books as
standard results for a uniform cantilever. For the tapered tower they were
obtained by the Rayleigh Ritz method with the shape functions selected as the
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mode shapes of a uniform tower. The variation of shears and moments with
height in uniform towers with different fundamental vibration periods are pre-
sented in Fig.6; similar results for tapered towers are presented in Fig. 7.
For three selected values of fundamental period T,, the heightwise variation
of shears and moments obtained by modal analysis and by Montes-Rosenblueth (M-
R) procedure are presented in Figs.8-10 for uniform towers and in Figs.1l1-13
for tapered towers. The variation of base shear and moment with fundamental
vibration period, obtained by the two analysis procedures, is presented in
Figs. 14 and 15.

These response results demonstrate that the M-R estimates for shears and
moments are reasonably good only for uniform towers with fundamental vibration
period which is either rather long, near the long-period end of the constant
pseudo-velocity branch of the spectrum; or short enough to fall on the con-
stant pseudo-acceleration branch of the spectrum. In the first case, the M-R
estimate is controlled by eq.6 associated with the hyperbolic spectrum; and in
the latter case by eq.5 associated with the flat spectrum. At intermediate-
periods the M-R estimate is excessively large, because the response is affect-
ed by both types of spectra, a situation illustrated in Fig. 4. The mass and
stiffness distribution over height does not enter into the M-R estimate for
shears and moments; only the total weight enters into eqs.5 and 6. When pre-
sented in dimensionless form the M-R estimate is thus identical for uniform
and tapered towers. However, the results of modal analysis demonstrate that
the dimensionless responses of a tapered tower are much smaller than those of
a uniform tower. Thus the M-R estimate for the response of tapered towers is
excessively conservative over the entire period range.

The presented response results demonstrate that, over a wide range of
fundamental periods, excellent results for shears and moments in towers are
obtained by considering only the first two vibration modes in modal analysis.
For short period towers, with fundamental period shorter than the wvalue at the
corner of constant pseudo-acceleration and constant pseudo-velocity branches
of the spectrum, only the first mode contributes significantly to the forces,
and even the second mode need not be included. For towers with longer vibra-
tion periods, the one-mode analysis recommended in Ref.l is inadequate because
the second mode has significant contributions. The second mode response should
be explicitly considered because, contrary to what was suggested in Ref.2, it
can not be satisfactorily approximated by simply increasing the first mode re-
sponse.
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Fig. 1 Tower Submerged in Water.
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