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SUMMARY

The truncate conical shape is widely used for the suspended concrete
water tanks. The seismic performance of such a kind of reservoir has
therefore to be determined. By following Hausner's bynow classical
approach in the present paper the fundamental period and the convective
pressure are calculated by means of a variational technique, with some
experimental checks.

A method is then proposed, following the Jacobsen theory,to evaluate the
impulsive components of pressure.

INTRODUCTION

By following Housner's bynow classical approach (Ref. 1) it is
possible to analyze the dynamic response of a rigid-walled truncate-comical
reservoir, subjected to seismic actions as a combination of two different
and substantially uncorrelated effects (Ref. 2): the convective force
which is above all due to the fundamental sloshing of the liquid in the
tank; and the impulsive reaction generated by the accelerated walls of the
containers.

CONVECTIVE FORCE

The shape and period of the fundamental mode

This can be calculated by means of a simplified model. The following
approximations are adopted:
a) undeformable container walls
b) uncomprensible and not viscous fluid
c¢) small amplitude oscillations
d) by referring to the figures 1 and 2 and indicating by 4, v and w the
velocity components respectively according to the x, y and z axis, all the
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points of the fluid with the same coordinates x,y have the same velocity

components u, V.
e) an ideal flat horizontal surface in the fluid stays flat during the

motiom.

Fig. 1

The continuity and uncompressibility conditions lead to the following
equations (Ref. 1) (Ref. 3).

v=x 1)
... 109 [ :
u=u+u =- " >3 x b dx + R tga 2)
m o bdy X

i AL ab
W=z b 9% . x b dx where b' = —4— 3)

2 a Bx

b y /-R
It should than be possible to determine the function:
d=9 (y,t)

A variational approach can be basedon the Hamilton principle.
The value of potential energy is:

1 2
V. =— I 4
p "0, 1, )
where ﬂ% is the rotation of the free surface

2

IZ is the momentum of inertia of the free surface.
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The kinetic energy is explained in the following manner:
0.2
——a)

h .
1 2 .2 .2 1 2 ) .
T=EQ f(u +v +W)dV="2‘Q j A10 +A20%%+ A3( dy

where A, A2 and A_ are functions of the variable radius R = y tga,

being @ the opening o% the cone (Ref. 3).

By setting null the variation of the energy function in the time interval
At the whole problem is reduced to the solution of the following two

equations:

2
2 2 0 4 07
£ N AC A
277 Toy2 T 9V oy Tk 0 6)
2 2 04 Ez 3 1 1
— —2)  + P or - = 0 7
27 22 C5yn T Y L 82a Y )
2 2 2
The solution of 6) is an algebraicfunction:
F1 F2
CRl [C1(%) ¥ Cz(%—) } 8)
2 2 2
F
where ! = -;' [- 1t V1 + 2,16 k]
}2
_ 1 tg Q
and k 4 th_a
The coefficients C1 and C2 are deduced by putting:
) =0 ) = ¢
= = h
y="h) 64 hz) 9
We therefore have: (F <F )
h] 12
€ = h1 (F,-F.) C:z:_(?f) - & ?
Loy 2 2
1':2

In most cases C, =~ 1 and C_ = 0; then the equation 8) can generally be
written in the approximate form:

F .
S= & . DARN , 10)
h2 ( 2)

without any relevant error.
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Substituting 8) in 7) we obtain:

) = 3 (in Wt + P)
h2 C’h2

= & 11)
h tgza[i(FC+FC)+1}
27 177272

. h
2
T, = 27 tga V—F +1 + ... )? 12)

The natural period, calculated in this manner, has been compared with the
experimental results obtained by letting the water oscillate freely in
three reduced models with different a . '

Repeated tests were performed for each model using different water level
heights. The tests-are described in table P1.

TABLE P1 .
Ah h1 h2 : Natural period (sec)
a experimental calculated
[mm] | [mm] (mm] values values
30° 180 217 397 0787' 0.84
360 217 577 1.03 1.01
540 217 757 1.16 1.16
130 125 255 ©1.05 1.02
45° 260 125 - 385 -1.26 1.25
390 125 515 1.46 144
80 72 152 1.30 1..25
60° 160 72 232 1.52 1.55
240 72 312 1.76 1.79

CONVECTIVE PRESSURES

With higher simplicity and safety (Ref. 1) the variation of the
convective pressure p,, versus y (fig. 2) can be expressed by a
co-sinusoidal.low; i.e.:

Py = DPg cosy
where Po is Py in the x, y plane.

By integrating along x starting with x = o we obtain:
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R .
Po= -0 (- f %dx) %%+9£§R2tga 13)

0

with Q = jx x bdx

-R
F (F -F.) F
2
b Be -0t do (L) w22
h h h
2 2 2
it follows:
2 3 2 1{ y \(F. +2) y \F_+2)
Po= g.hl. - — - ——
o e-h,.tga w0h9(9+2}?‘1)(h)1 (9+2F2)(h)2 ] 14)
2 2 2
The resultant force RH is
27 (h
RH =f fzp.y.tga .cosy .dy.dy 15)
o hy "w

In the following formulas it will appear the function A(i) of the integer
parameter i:

9 + 2F1 (F1+i) (F1~F2) 9 + 2F2 (F2+i)
o @ T [ T
(1) - 1 - W w F—— 1 “w 16)
1 2
If i = 5 and @>7/4 the second term in the second member becomes:
-F
2 1 1
LW . 1In [‘7/ (,u,— ‘1:;)

approaching zero as ->0; anyway it can be generally omitted.

4 2
RH =50 . o & - A(4)
zh h
2 2
The convective moment referred at the top of come O is:

M=M]+M2+M3 19)

2 tha
_ - - Gy dy = Y01 @ D
M = |[p,cosa ds = Pyy tga cosy dy dy = 99 zh h

.hZ.A(S)
s o h 2 2
1 1

2 (hy , 4 A "
. 2
M = P, sinQ ds = Py ¥ tgQ cosy dydy = —0L @ ¥ .h .tgaA(s5)

s1 o h1
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M3= / pwds = Izh po(h1)/(y,.h2.tga)

s2 1
s and s_ indicate respectively the lateral surface and the flat bottom.
In order to analyze the overall dynamic response one can represent the
moving liquid with an oscillating mass m1 sustained by a spring K.

2 2

RH X RH

m, = 5. = —
< Y

1 w Vl 1

where V. is given by 4)

The height over O cZ)f m1 is (F1+2)
h2(1+tga ). AG) + 2 w (F1-F2)

M
T RHE A(4)

b1

Table P2 shows the calculated values of the oscillating mass and its

height over the top of the come. h

Three cones with different @ are shown: W = P is assumed 0,3 and
hz- 10 m. 2 ‘

Opening of the cone (a) 30° 45° 60°
Oscillating mass [kg) 188 . 103 778 . 105 2.784 . 10
bt [m] ' 11.3 17.0 35.5
Oscillating mass/real mass 0.55 0.76 0.91

THE IMPULSIVE EFFECT

It can be assumed that the motion of the container is an horizontal
translation.

The velocity of the walls, therefore, is equal at every point in the same
time.
The pressure inside the liquid is expressed by:

b = Q%‘tj - 20)

U(r,y,y,t) in the cylindric cohordinates with the origin at the top of
the cone, is the potential of the velocity field, governed by the Laplace

tion:
equation A2U -0
and by the following conditions on the boundary (Ref. 4)
U, . =0 (free surface flat and no pressure on it)
(y—hz)
Ju . .
s =0 (no vertical velocity at the bottom)
y
(y=h1)
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(—a—g cosQ - _9u sina) = -u cosQcos 21)
or dy (r=ytga) T ’

(the wall and the nearest layer of fluid have the same
velocity U_ in the direction orthogonal to the lateral
surface). n

The solution is:

U= Uo(r,y,yﬁ) - £(e) = £(c) cosy 3 A cos [Km(y-h1)} L (K 7
2

where K = and 11 indicates a modified Bessel function of the

h_-h
21
first kind of order 1.
f(t) is the velocity of the container. With the Ritz-Galerkin method, by

putting U = finite expansion at the ath term approximating U, we have

2

9 (—g—g cosa —-%gsina +{1n cosa> =0

0A
m
The unknown coefficients A are determined by solving the linear system

m
2 a(i,j) . A(§) =bD)
hZJ
where a(i,j) = f K.X.G,G.dy
131
h
1
1
I Kyt
1(syga)

G = - i -h)] .
;= cos Ks(y hl) sin [Ks(y hR} 11(Ksytga )

K
s

h2
and b@E) = -pf(t) J K,G,dy
ii

h
. : . 1 . .
The function f£(t) is the acceleration of the container.

The pressure is
o0

P.=]2 A cosK(yvh,) I (K ytga):]. 0.£(t) cosy 22)
wimp Lp=1 m m 1 1 m
The resultant RHi and resultant moment Mi are deduced from the expression
22) by means of the same integration procedure used for the convective
pressures. In order to perform the overal analysis of the structure, the
impulsive response of the water can be replaced by a concentrate-rigidly
fixed mass having the value _ RHi

)
The diagram P3 shows the ratios m_ versus real mass and vertical
displacement of the m, Versus h2 ?or different angles & and different u .
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