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SUMMARY

A method for analyzing the earthquake response of cylindrical 1liquid
storage tanks under the action of vertical acceleration is described. The
method is based on superposition of the free axisymmetrical vibrational modes
obtained numerically by the finite element method. The validity of these
modes has been checked analytically and the formulation of the load vector has
been examined by a static analysis. Experimental confirmation of the
preceding analyses is underway.

INTRODUCTION

Earthquake motion is three dimensional in nature and recent observations
of recorded ground motion showed that maximum amplitude of the vertical com—
ponent of ground acceleration can exceed peak horizontal amplitude especially
near the center of the earthquake. Because of the inherent stiffness of
typical structures in the vertical direction, the effect of the vertical
component of ground acceleration has been -often ignored. However, in a
liquid-filled tank, vertical acceleration can be transmitted to a horizontal
hydrodynamic loading. As a result, tank wall undergoes radial deformations in
addition to axial displacements.

A research project is wunderway to assess, both theoretically and
experimentally, the relative importance of vertical excitations in the design
of tanks. The study (Fig. 1) includes a theoretical treatment of the free and
forced vibrations of the coupled liquid-shell system both analytically and
numerically; vibration tests of reduced-scale models subjected to = both
harmonic and random vertical excitations; and development of design charts
which take into account the effect of vertical ground acceleration. Much of
the efforts spent up to the writing of this paper has been directed to the
development of a theoretical model for the evaluation of the dynamic
characteristics such as natural frequencies, mode shapes of vibration and
modal participation factors under excitation parallel to the tank axis. The
experimental phase has just started along with the theoretical evaluation of
tank response under vertical seismic excitationms.

TANK GEOMETRY, COORDINATE SYSTEM AND ASSUMPTIONS
The tank under consideration is shown in Fig. (2). It is a ground-

supported, circular cylindrical, thin-walled liquid container of radius R,
length L, and thickness h. The tank is partly filled with liquid to a

Ipssistant Professor and llGraduate Research Assistant, Civil Engineering
Department, University of California, Irvine, CA 92717, USA.

421



DYNAMIC BEHAVIOR OF LIQUID STORAGE TANKS
UNDER VERTICAL EARTHQUAKE EXCITATION

z Ring Shell Element
' \\ 3
1 Free surface MECHANICAL \
Element ~—
- Control v
Liquid . AN ~Z
Region l Arrecior K System L) 2
! :J Few{ - Parameters of
R M. h. : 1
S\Q MODEL Model
Axisymmetrical &\\&\
‘Gv(” Section
(1) THEORETICAL PHASE (I) EXPERIMENTAL PHASE (Il) DESIGN PHASE
Free aond Forced Vibration Tests of Simplified Anolysis
Vibration Analysis Reduced Scole Models and Design Charts

Fig. (1). Outline of Overall Study.

height H. A cylindrical coordinate system is used with the center of the base
being the origin. The radial and axial displacement components of a point on
the shell middle surface are denoted by w and u, respectively. Throughout the
investigation, the liquid 1is assumed to be homogeneous, inviscid and
incompressible and the shell is assumed to be elastic. The cylindrical wall
is rigidly connected to a thin bottom plate of thickness hy. In the anchored
configuration, the shell is fastened to a concrete ring wall foundation
whereas, in the unanchored configuration, the base plate rests directly on a
compacted soil.

HYDRODYNAMIC PRESSURE

The hydrodynamic pressure exerted on the wall of a flexible tank due to a
vertical ground excitation Gv(t) can be obtained by superposition of three
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pressure components: the long period component contributed by fluid sloshing;

the impulsive pressure component which varies in synchronism with the vertical
ground acceleration; and the short period component contributed by the vibra-
tions of the tank wall, Each of these pressures can be obtained from a
velocity potential function which satisfies the Laplace equation and the

appropriate boundary conditions. For example, the short period pressure
component can be expressed as
3
py(R,2,8) = = b, =¥ (R,z,0)
-
2p ® [ w(n,t) cos(a_n) dn
=-_2* 3 0 n I (e R) cos(a z) (1)
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where o = (2n-1)m/2H; p, is the mass demsity of the liquid and I; is the
modified Bessel function.

A NUMERICAL APPROACH TO THE AXISYMMETRICAL FREE VIBRATION

For the problem under consideration, it has been advantageous to combine
analytical with numerical methods rather than solving the whole problem numer-—
ically. The series solution for the hydrodynamic pressure is used, and
therefore, only the shell needs to be modeled by ring-shaped finite elements
(Fig. 3). The strain energy expression of the shell is written in terms of
the assemblage stiffness matrix and the assemblage nodal displacement vector
as

o) = 3 {a}" %] {a} (2)
whereas the kinetic energy of the shell is given by
(e) =5 {4 ) {4 (3)

The short-period fluid pressure is taken into consideration by introducing an
additional mass matrix in the matrix equation of motion of the shell. The
work done by such pressure through an arbitrary virtual displacement, 6w, is

expressed as
H

{

W = 2mR | pd(R,z,t) dw dz (4)
0

The elements of the added mass matrix can be computed by expressing Eq. (4) in
terms of the displacement vector {q}. Thus

0
T i i) T 7 T -
o = - {oaft 3 b, FP} FP)T ) = -{sa} o (g} (5)
i=1
where
- 4R Py Io(aiR) (6)
PR T e T 7~ DN
i H o Io(aiR)
The series in Eq. (5) converges very rapidly and only the first few terms are
needed for adequate representation of the infinite series. The matrix

equation for the free axisymmetrical undamped vibrations of the tank wall
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becomes
l{q} + [x1{q} = {0} )
where [M] = [MS] + [DM]; and [K] = [KS].
AN ANALYTICAL APPROACH TO THE AXISYMMETRICAL FREE VIBRATION
Two partial differential equations govern shell motion; one of the second
order governing the dynamic equilibrium in the axial direction, and the other

of the fourth order governing the dynamic equilibrium in the radial
direction. These equations take the form

2 p.h 2
-3—;+7\{gﬁ—-—§———3‘2‘=0 0<z<L (8
[ z At
K34w+ Eh W VEh Bu h;;szp(z,t) 0<z<H -
4 2, 2 7.9z Ps 2

ot 0 H<z<L

where E is the modulus of elasticity of the tank material; Vv is Poisson's
ratio; p(z,t) is the pressure exerted by the liquid on the tank wall at any
time t; and D and K are the extensional and bending rigidities of the shell,
respectively.

The complete solution for the axial and radial displacements of the shell
can be expressed as
=]
A, G, (2) + ) P_sin(a z)]
i1 =] B n (10)
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where F;(z) and G;(z) are real valued functions representing the homogeneous
solution and P and Q, are bounded coefficients. Algebraic manipulations of
Eqs. (8), (9) and (10) yields the following expression for Q, in terms of the
unknown coefficients Ay
6
Q, = A, _Z Ap T (1D)
i=1
where A are factors dependent on the properties of the liquid-shell system
and its frequencies of vibration and
"
| Tin= Of F, (%) cos(anx) dx (12)
For a partly-filled tank, two sets of solutions are obtained; one for the
wet part of the shell and the second for the dry part. Each of these sets
contains six unknown constants, A;, and hence the two sets together include 12
unknown coefficients. Enforcing the boundary conditions at the base and top
of the shell and the compatibility equations at the junction of the lower and
upper parts of the shell yields twelve simultaneous algebraic equations. The

frequency equation is obtained by setting the determinant of the coefficient
matrix equal to zero.

424



COMPUTER IMPLEMENTATION

Two computer programs have been developed on the VAX 780 at UCI to
compute the natural frequencies of the 1liquid-shell system and the
corresponding mode shapes. In the numerical approach, the shell nodal
displacements (eigenvectors) are a direct result of the eigenvalue problem,
and these are used to solve for the shell force resultants and for the
hydrodynamic pressure distribution along the wall of the tank. In the analyt-
ical approach, an iterative procedure is adopted. An approximate value for
the natural frequency is first assumed and the determinant of the coefficient
matrix (12 x 12 in case of partly filled tamks and 6 x 6 in case of completely
filled or empty tanks) is calculated. If the value of the determinant is not
zero, the entire process is repeated until such condition is met; and this
provides the natural frequencies of the system.

PRACTICAL APPLICATION

Recent developments in seismic codes for liquid storage tanks have recog-—
nized the effect of wall flexibility on the response of these structures to
lateral ground acceleration. However, most of these codes do neglect the
effect of vertical ground motion. A simple and closed form equation for the
fundamental natural frequency of the system, which can be attractive for
inclusion in a simplified code analysis, has been obtained. For practical
tank dimensions, the fundamental mode shape is approximated by a cosine
function leading to the following closed form formula for the fundamental
natural frequency

2 - En/R2(1 - vP)
1

(28 p, I (e R)/m "I (a R))
A comparison between the frequencies calculated wusing the analytical and
numerical methods and those calculated from Eq. (13) shows that the
frequencies computed from the simplified equation agree favorably with those
obtained by both computer programs. Once the theoretical and experimental
phases are complete, attention will be directed to developing additional
simplified formulae which provide shell stresses for use in the design
process.

(13)

TANK RESPONSE TO VERTICAL EXCITATION

Earthquake response of tanks is greatly influenced by the conditions at
the tank base. For an anchored tank, the matrix equation which governs the
response to vertical excitations can be written as

m {a} + el {&) + (K1 {q} = {2} = ~{F} G (0 (14)

where [C] is the damping matrix; and {P ff} is the effective earthquake load
vector resulting from a given vertical ground motion Gv(t). The external
forces acting on the shell due to vertical ground motion include the
distributed inertia force of the shell and the hydrodynamic pressure on the
tank wall assuming it to be rigid. This pressure takes the familiar form

P (r,2,8) = ~p(z = 1) G (t) (15)
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The virtual work done by these external loads can be expressed as
H

L
&W = 2mR [ {Fg}T {6d} dz + 2mR | pg(r,z,t) Sw dz
.0 o . ,
= -6, {sa}" (fF}+ {F) = - 6,0 {ea}” {F} (16
ILLUSTRATIVE NUMERICAL EXAMPLES

The preceding analyses are applied to several tanks having different
proportionality and properties; off these tanks, two are considered herein

(a) Tank 'T': R = 24.0 ft (7.32 m), L = 72.0 ft (21.95 m);

(b) Tank 'B': R = 60.0 ft (18.29 m), L = 40.0 ft (12.19 m);
and both have a uniform wall thickness of h = 1.0 inch (2.54 cm). Both tanks
are made of steel and are filled with water.

Free Vibration Analysis: Inspection of the natural frequencies and mode
shapes obtained from the finite element model indicates excellent agreement
with those obtained from the analytical solution. It has been clear that, for
empty tall tanks, axial deformation governs the dynamic behavior whereas
radial expansion dominates for short tanks. For completely full tanks, the
added liquid mass is much larger than that of the shell, and therefore, the
frequencies are reduced appreciably than those of empty tanks. Figure (4)

Table 1. Comparison of Natural Frequencies of Full Tanks (Hz)

Mode Tall Tank 'T' Broad Tank 'B'
No.
Numerical Analytical Numerical Analytical
1 6.86 6.75 6.40 © o 6.27
2 18.26 17.99 11.97 11.77
3 26.16 25.79 15.34 15.13
AXIAL RADIAL AXIAL RADIAL
TANK 'T' TANK 'B'
ANALYTICAL

® ¢ o & NUMERICAL

Fig. (4). Fundamental Mode Shape of Full Tanks.
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shows the fundamental mode shape of the completely-filled tanks while Fig. (5)
shows shell stress distributions associated with that mode. Figure (6)
presents the hydrodynamic pressure distribution associated with the two lowest
modes of vibration of tank 'T'.
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Fig. (5). Shell Stress Distributioms. Fig. (6). Hydrodynamic Pressure.

Reduction in liquid level inside the tank increases the natural frequencies of
the system as shown in Fig. (7) where the variation of the fundamental natural
frequency of tank 'T' and tank 'B' with liquid height is plotted. The
variation of the fundamental mode shape with liquid depth inside the broad
tank is presented in Fig. (8).

Forced Vibration Analysis: To check the formulation of the load vector,
static response of the two tanks was computed. The finite element results
were obtained using 30 elements with a finer mesh near the bottom of the tank
to capture the rapid variation in displacements and stresses. A comparison
between the numerical and the closed form solutions for tank displacements and
stresses under hydrostatic pressure has confirmed the accuracy of the load

I T T T T T T
_. 18.0F -
~N
T
= 16.0} .
o
c
]
o 14.0+ —
e
[V
© 12.0F —
5
o
Z 0.0 —~
©
% 80 |
g .
(=]
2
> 60 -
[V
4.0 1 | 1 | 1 1 l
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(H/L) Ratio

Fig. (7). Variation of Fundamental Frequency with Liquid Depth.
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Fig. (8). Fundamental Mode Shape of a Partly-Filled Broad Tank.

vector. Two types of excitations have been used in the forced vibration
analysis: impulse functions and actual ground motion records. Preliminary
results of the earthquake response analysis have shown that vertical
acceleration can play a significant role in tank response to seismic
excitations. It should be noted that the relative importance of such
acceleration depends on the kinematic conditions at the tank base.

CONCLUSION

A method for seismic analysis of tanks under vertical excitatioms is
described; it is based on superposition of the free axisymmetrical vibration
modes obtained analytically and numerically. Inspection of the numerically
computed natural frequencies and modes shows excellent agreement with those
obtained analytically. A closed form formula for the fundamental natural
frequency is obtained. The remainder of the research project is underway with
a scheduled completion date of July 1984.
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