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SUMMARY

The dam-reservoir system is considered as two field coupled problem.

An Eulerian-Lagrangian (EL) formulation is adopted where the motion of the
reservoir water is described by displacement potential variable in an Eule-
rian system and the motion of the structure is described by displacement in
a Lagrangian system. In this paper, the influence of shape of dam on the
hydrodynamic pressure distribution along the height of the dam at the time
of maximum hydrodynamic force, and the influence of shape of reservoir on
the response of dam and hydrodynamic force are investigated.

INTRODUCTION

The hydrodynamic force plays an important role in the design of a major
dam against seismic forces. The various factors which influence the hydro-
dynamic forces are the compressibility of the water, flexibility of the
dam, shape of the reservoir, shape of the dam, silt suspension and silt depo-
sit at the upstream face of the dam. In this investigation, influence of shape
of reservoir and dam on the respone of dam and the hydrodynamic pressure ha-
ve been investigated.

A field partitioned solution scheme, which eliminates the inefficienci-
es due to overall unsymmetric matrices is adopted here (Refs. 1,2). In this
procedure the concrete dam and the reservoir water are considered as two se-
parate fields which are continuously interacting with each other at the con—
tact surface. In the finite element analysis of the reservoir, a displace-
ment potential formulation in Eulerian system is adopted, in which the water
is considered inviscid, irrotational and compressible. For the concrete dam
2D-plane stress finite elements have been used to diseretise the dam. The
transient dynamic response of dam-reservoir system is carried out in time
domain.

DISPLACEMENT POTENTIAL FORMULATION FOR WATER
In this formulation the displacement in water is replaced by a displace-

ment potential which is scalar quantity (Ref. 3). The displacement poten-—
tial which conveniently defines the displacement as:

i = -f} u, (1)

. . . . -th
where,\'is the displacement potential, u, is the displacement in the L™ coord-
inate axis, and f% is the density of fluid (water).

The momentum equation for fluid is expressed as:

§ (D 4,/pt) = o;j.j - S e (2)
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where, D ﬁi/Dt = O + ﬁi’j tiJ. = t'ii (3)

For small water motion, the term U.,: U. in (3) can be neglected as
compared to U,; g. is the appropriate gravity camponent and g7. are the stress
component. IT thé stresses and the pressures are the excess dbove hydrosta-
tic pressure then body forces can be discounted. For small displacements the
constitutive law for stresses in inviscid water are definéd as:

a3; =" B (€ Sy )

in which, P is the pressure and Si' Kroneker's delta. Substitution of
(3) and (4) in (2), gives: J

St =- 2 (3
Substitution of (1) in (5), gives:

ey =g (6)
Integration of (6) and discounting the arbitrary constants yields:

& o ™
The continuity condition is expressed as:

&, = Uy = p/K (®

where, cv'is the volumetric strain, K is the bulk modulus of water. Elimi-
nating p, u and f% from (1), (6) and (8), we obtain,

Lo
7 4p= ':2“"“" €]

where ¢ = JK/?E = acoustic velocity of water

Boundary Conditions

The various types of boundary conditions are prescribed as follows:

(i) The prescribed pressure on the free surface with small amplitude waves
can be expressed as:

p = ?f gy (10)
using (1) and (7), (10) can be expressed as :
Midy =g 1)

with no surface waves, p = 0 is prescribed.

(ii) On the solid boundaries where the normal component of displacement
v, is prescribed,

MtY/on = - ff u (12)
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On a rigid boundary u = 0, therefore,M/dn = O. In case of base excitation,
u_ 1s composed of the translation at the base and the relative displacement
of the structure with respect to the base.

(iii) At the radiating boundaries, the Sommerfield condition is applied to
suppress the reflecting waves (Ref. 4)

M/dn = /e (13)

Finite Element Discretisation

The equation (9) together with the boundary conditions defines the
system. The Galerkin method is used to derive the discretised equations
(Ref. 5). An identical variable name for field and nodal quantities is used
to express:

(=1
17

Wo=Mp o5 us= (14)

where N and E are the shape functions for water and solid respectively.
Finally, following discretised euqations are obtained.

M+ cohr R -§, Q0 (w+ D s
1
where, (Mf)ij "z r'Ni Nj dj + —(:%—J:Qf NiNj aQ
E
N, AN, ON. N.
CPP P S % ) (16)
ﬂ{bx dx Dy dvy
€. = = | N N, 4 (@, =| Ny ANy qr
P13 ¢ | N Ny 45 @y =) MR N
H T

r7F, rll[ andri{ are the free surface, interaction and radiation boundaries;Qf
is the fluid (water) domain ; d is the ground displacement, and ﬁ unit
normal veetor.

DYNAMIC EQUILIBRIUM EQUATIONS FOR SOLID

For dynamic equilibrium of a solid body in motion, the principle of
Virtual Work can be used to write the following equations at any time irr-
espective of material behaviour.

faéTcrdn -fe?f (- QF -pida- frsfz ar -l Ty an
Qg - MeRy t JE

where§ u is the vector of virtual diSplacements,géis the vector of ass-—
ociated virtual strains, b is the vector of applied body forces, t is the
vector of surface traction on boundary [°, p is the pressure from water at
the interaction surfaceli;o is the vector of stresses, §s is the mass density
of solid, A is the damping parameter;Qsrepresents solid domain and the dis-—
placements u are specified on lu.

Finite Element Discretisation

In displacement formulation, the displacements, strains and their
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virtual counterparts are given by the following relationships (using
the same notations for field variables and nodal values).

Nu ; Su=Nu (18)

¢ =Bu; S&=Blu

le
1

where u is the vector of nodal displacements, Su is the vector of virtual
nodal variables, N is the matrix of global shape functions and B is the
global straln—dlsplacement matrix. Substitution of (18) in (17) and noting
that the resulting equatlon is true for any set of virtual dlsplacements

Su then the following equations are obtained (If ground acceleration, d is
‘also considered)

MoErC G+ q - £ +Q¥-yu d (19)
where,
=T, = =T = =T =T
M =N{N dQ; C =\N /LN do; £ =|N" b do+|N" t ar (20)
=s = Js— 5 = /t= s |=— == )= =
g EL “Qg T

GOVERNING EQUATIONS OF COUPLED MOTION

The structure and water are together idealised as a 2D — system subject-
ed to support excitation both in the horizontal and vertical directions
and the equation of motion of individual fields can be expressed as above.
If the displacement potential formulation is used for the water then coupled
water-structure equations can be expressed in the following matrix form
(for linear problem 9 (w) = _Igs w),

Mo-Q (T f+|cooE |+ R o ffuff, -k d
T T 21)
O Ml | | Celld| |5 QT Kyl - Q4

SOLUTION SCHEME

It can be seen that the overall matrices of the combined water—structure
system are unsymmetrical. The direct solution of coupled equations involve
large unsymmetrical matrices requiring excessive computer storage and time.
The adoption of partitioned solution schemes (eliminates most of the above
inefficiences). An efficient computer code MIXDYN-FSI has been used (Ref. 6)
which uses partitioned solution scheme together with Newmark's predictor—corr-
ector implicit-explicit time integrating scheme (Refs. 7,8). Here both the
reservoir and the structure are treated as separate fields coupled together
through the contact boundaries. The reservoir and structure meshes may be
further partitioned into implicit or explicit group of elements. Both the
structure and water may be treated here as nonlinear continua. In this
analysis, the water is considered linear, however, a nonlinear water model
allowing for cavitation can also be considered (Ref. 9). Eight noded iso-
parametric element has been used to discretise both for the dam and the
reservoir. A 2x2 integration has been used for stiffness matrix and 3x3 in-
tegration has been used for consistent mass matrix. In the analysis surface
waves are neglected where as radiation boundaries in water are considered.
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INFLUENCE OF DAM ON HYDRODYNAMIC PRESSURE

The hydrodynamic pressure distribution along the height of dam is obta-
ined at a time when maximum hydrodynamic force is attained. The influence of
dam on the hydrodynamic pressure distribution along the helght under various
conditions of water compressibility and dam flexibility is investigated.

The dams may be of different height, shape and properties. Three diff-
erent dams are considered as shown in Fig. 1. The three dams considered are
the Pine Flat, Koyna and Bhakra dams. The upstream slope of Pine Flat and
Koyna dams are small as compared to the Bhakra dam. Figure 2 shows the normal
pressure distribution curves for various dams when subjected to a Heaviside
unit base excitation for the following conditionms:

a. Dam and foundation are rigid, and the water is incompressible (Fig. 2a)
Dam and foundation are rigid, and the water is compressible (Fig. 2b)

c. Dam and foundation are flexible, and the water is compressible (Fig. 2c)

When the dams are considered rigid, the normalised pressure distribution
for the Koyna and Pine Flat dams are nearly identical for both the incompre-
ssible and compressible water (see Figures 2a-b). For compressible water
the pressure distribution curves are plotted when the hydrodynamic force on
the dam is at its maximum. The curves for the Bhakra dam have a different
distribution at the lower half of the dam and this may be attributed to the
inclined upstream slope of the dam. Figure 2c shows the normalised pressure
distribution curves when both the dam and foundation are flexible, and the
water is considered compressible. The distribution curves are significantly
different for the various dams considered.

Table 1 shows the ratios of peak hydrodynamic force to hydrostatic for-
ce on various dams under different conditions when subjected to a Heaviside
unit base excitation. When the dams are rigid, the hydrodynamic force decr-
eases with the increase in the ratio of fundamental time period of the res-—
ervoir to the dam. When the dam is considered flexible the pressure force do-
es not show a definite trend. The effect of compressibility of water and
flexibility of dam is to increase the peak hydrodynamic force significantly
as can be seen from the table.

Table ~1 Comparision of peak hydrodynamic force on various dams under differ-
ent conditions when subjected to a Heaviside unit base excitation

Dam~reservoir System Rigid dam Flexible dam
Water Water Water
incompress- compress— compressible
ible ible

Koyna dam system ¥ =0.566 1.070 1.550 2.180

Pine Flat dam systemV=0.919 | 1.055 1.530 1.890

Bhakra dam system ) =1.156 | 0.945 1.327 2.308

(Tg) reservoir ; The ratio of fundamental periods of reservoir to the dam

= (T) dam
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INFLUENCE OF BOTTOM SLOPE OF THE RESERVOIR

Three different shapes of reservoirs for the Bhakra dam—reservoir system
have been considered as shown in Figures 3a-c and the corresponding responses
when subjected to EL-Centre earthquake (N-S component) are shown in Figures
4a-c. When the bottom slope is changed from 1/6 to 1/3, the response of dam-
reservoir system does not change appreciably. However, the response signifi-
cantly changed when the reservoir is bounded as shown in the Figure 4c. Chopra
has also observed that the pressure response is not sensitive to reservoir
length as long as L/H >3 (where L = Length of the reservoir and H = Height of
dam)

CONCLUSIONS

Hydrodynamic pressure distribution curves are not sensitive for rigid dam
with nearly vertical upstream face for both incompressible and compressible
water. Rigid dam with inclined upstream slope changes the pressure distri-
bution curves significantly. The pressure distribution curves for flexible
dams at the time of peak hydrodynamic force is significantly different for
the various dams. The response of dam-reservoir system does not change app-—
reciably when the bottom slope of reservoir is changed from 1/6 to 1/3.
However, the response significantly changes when the reservoir is bounded.
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