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SUMMARY

This paper presents a stochastic analysis of high-rise chimney
subjected to gravity as well as horizontal and vertical earthquake accel—
erations. Mean-square responses, including displacement, bending
moment, and shear for a class of chimneys are determined. Both time
histories of responses and spatial distribution of maximum responses
along the elevation of chimney are presented. The implication of the
significant analytical results on the design is discussed.

INTRODUCTION

Recent trend of building taller chimney to reduce air pollution has
increased the importance of understanding the chimney's dynamic behavior
for designing. Earthquake is a major load a chimney has to be able to
withstand. Most investigations are restricted to the behavior of exist-
ing chimneys subjected to actual earthquake motions. Refs. 1-5 are some
publications of these studies. A chimney is usually treated as an Euler—
Bernoulli beam-column which may be modeled either as a continuous system
or as a discrete lumped mass system. The input loads are either actual
strong motion earthquake time history or response spectra curves devel-
oped by enveloping the maximum responses generated from real earthquakes.
These deterministic studies have helped us to understand the seismic
behavior of chimney better, and, hence aseismic chimney design can be
improved.

Since earthquake motion is random in nature and chimney configura-
tion is diverse, the usefulness of case studies is rather limited in
scope. To supplement these shortcomings, a random vilration investiga-
tion is made. The earthquake acceleration is modeled as a modulated non-—
stationary random process. The equation of motion for the chimney is
nondimensionalized for generality. In addition to horizontal earthquake,
the effects of gravity and vertical earthquake are also investigated.

The implication of these analytical results on the design is discussed.

FORMUIATION OF THE PROBIEM

The equation of motion for the flexural vitration of a nonuniform
column subjected to the simultaneous action of both gravity and earthquake
loads is given by the following egquation
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with the following boundary conditions
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In Eq.(1), A(x) is used to denote the following integral
E(x) = J2A() @ 3)

EI(x) is flexural rigidity; y(x,t) is lateral displacement; m is mass
density; A(x) is cross sectional area; c is damping coefficient; g is
acceleration due to gravity; h is height of the chimney; u_and v_ are
horizontal and vertical earthquake accelerations, respectisely.

Consider the class of chimneys in which both outer radius and wall
thickness linearly decrease with the increase of chimney elevation, namely

Ro() =Ry [L1-(1-0¢; )20, T(x) =T, L1-(1-c,)5T (%

where c, = R /F s e, = Ty /T . R(x), R »* By are outer radius of the

chimney at any elevgtlon, P th8 bottom, and at the top, respectively.
T(x), T,, T, are wall thickness of the chimney at any elevation, at the
bottom, and 'at the top, respectively. It can be shown that classical
normal modes for Eq.(1) exists, which, in the chimney case, can be deter-
mined from the following eigenvalue problem

L (g [ Io(x0) (%) T+ By Ay(xy) ) }-R, %,
I SENCH (%)

= Ay f*(x*) (52)
£,(0) = f;(o) = f_;' (1) = f;” (1) =0 (5b)

1

in which x, =x/h, &,(x,) = A(x)/(T R ), R = (mgh3)/(ER§), Ay = af;
(mn'e?)/(8R2), K,(x,) = K(x)/(T,R h) Laxg) = 1(0/(=Jr,)

By using normal mode expansion, the equation of motion for the
chimney is reduced to the following uncoupled equations

32



Q;(T) ‘2 B’faf B ay(x) + (a{;)z (1-0) Q) -& . V;(T)Qj('r)

- hJU(") i=1y 2, 3 eun . (6)

in which

I I I 1
B-)f"-' Zxﬂ_( 3,1 71,1 )2, a)‘)f (__lzL_i_l_)

T
3 I 0 13,5 04,5 J 11,5 13,1

I, . I, . I
6. = —I-—LJLRG , Rv . =—I—L.J_ ’ Rh . =—E§1.J]— R
J 3,3 vJ 1,5 "J 1,3

where these parameters are written in terms of the following integrals

1, 5= J‘l A, (x,) f?(x ) ax,, I, = fcl) f?(x*) ax,
13’j=f1f(x)————[1 (x)f(x)]dx ,
fl A (x) [ f (x ) ]2 dx, I5.j = fé A*(X*) fj(x*) axy

In the above equations, the following dimensionless variables are intro-
duced: T = wt, U_ = ug/h, vV = vg/h, Q. q /h g . is the jth generalized
coordinate. € g J

A modulated nonstationary stochastic model is employed to account for
the nonstationary nature of an earthquake; namely, the earthquake accel-
eration is modeled as a product of a stationary random process and a
deterministic time function called envelope function. The envelope function
is used to reflect the initial build-up phase and final die-down phase of
a realistic earthquake acceleration. For simplicity, the stationary random
process is idealized as a Gaussian white noise process. However, the use
of white noise is unnecessary. In fact, the solution procedure presented
here can be applied to any spectrum of meromorphic function type. ILet the
envelope function be denoted by e(r) and the auto-correlation functions
for the white noise processes of horizontal and vertical accelerations be
given, respectively, by

Rwlwl(s) = 2D, 6(s) , szwz(s) = 2D, 6(s) )(7)

For a point source earthquake, it can be shown that the cross-correlation
function of W (T) and W (T) is given by
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SOILUTION PROCEDURE
By introducing the state variables of responses

205 (1) = (%), 2,5 (7) = Q(0) (9

the j~mode generalized equation of motion given in Eq.(6) can be converted
to the stochastic differential equation given below

dz;= EJ-( 25 7 ) ar + Q_j( 250 7 ) dB(7) (10)
in which
T
Z. = z
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B'(r) = LB(e) B,(v) J

where B, (1), B_(r) are Brownian motion processes corresponding to the white
noise pﬂ'ocesse given in Eq.(7).

Let the first-order and second-order moments of responses be denoted
by

m =B [ 25 1 my =8[ 32y ] (11)

It can be shown that these two moments of responses are governed by the
following equations

1
m]; =m, (122)
* * ¥* 2
m,o=-2B.w,Bm, - (0.)°(1-6.)m (12b)
@ J3 2 J J 1
Myq T 27y, (12¢)
m = _ * ¥ *, 2
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When there is no initial disturbances, first-order moments are identical-
ly zeros; it is then only necessary to solve the latter three equations
simultaneously.

For chimney analysis, natural frequencies are usually well seperated,
hence the contribution of modal correlation terms in combining modes is
negligivle, Thus, considering the first n modes, the responses of chimney
are given by

E [ R (x,,7) = zl F% (%) B [ e5() ] (13)
=

in which R,(x,,7) denotes response quantities of either displacement (Y,),
shear (S, ), or bending moment (M,). The function F, (x ) is given, faor each
1nd:|.v1dua1 response, by

Fj(x*) = fj(x*) for displacement (14a)
_ g_ 1"

Fj(x*) " -, L fi*(x*) fj(x*) ] for shear (141)

Fj(x*) = I,(x,) fj(x*) for bending moment (14c)

To find the maximum spatial distribution of responses, the following
approximation is used

8082 ) Wy e = T [0S0 1 gy
= (15)

NUMERICAL ANALYSIS AND RESULTS

Numerical studies are made for a class of chimneys having the parame-
ters ¢, = 0.45, and s = 0.5. The envelope function of earthquake used is

1 .
e(r) = (6.75)% (& 025 T _ 0757 (16)

which, together with a simulated sample function of acceleration, is shown
in Fig.1.

The effects axial loading has on the natural frequency of the chimney
is presented in Fig.2. As seen in this figure, axial load has less effect
on the higher modes.
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A damping ratio of B = 0.03 will be used throughout the following
illustrations where "H", "V", "G" are used to denote the contribution of
harizontal earthquake ( D .= 0.01 )s vetrical earthquake ( D o= 0.8D,
), and gravity ( R, = 1.% ) respectively. Fig.3 presents th&%time—
history of mean-square displacement of chimney tip. Fig. 4 is another
illustration of mean-square displacement of chimney tip, which indicates
that only first mode contribution is significant. Fig.5 presents the
standard deviation of the contribution to total displacement due to the
first three modes., The spatial distribution of maximum mean-square dis-
placement is shown in Fig.6. Figs.7 and 8 present the spatial distribu-
tion of maximum mean-square shear force. The spatial distribution of
maximum mean-square bending moment are presented in Figs.9 and 10.

CONCIUSIONS

1. The gravity force may change the modal freguencies of the chimney
significantly. Its effect decreases for higher modes. However, the
gravity force has less obvious influence on mode shapes. When the
parameter R, is small, changes in mode shapes are negligible.

2. The contribution of the higher modes to total mean-square displacement
is negligible. However, higher modes do play an important role in
contributing to mean-square shear and bending moment.

3. The effect gravity has on the chimney response is uniquely determined
by the R, value. A good design would be to make RG small enough to
reduce the effects of gravity.

L4, The vertical earthquake acts as a parametric excitation which intro-
duces additional responses to a large extent on a lateral displacement
level, Therefore, a chimney with a stiffer design or a larger damping
can significantly reduce the destructive power of the vertical
earthquake motion.
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