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SUMMARY

Dynamic response of buried pipelines (modeled as cylindrical shells)
to moving (seismic) disturbances has been studied in this paper. The pipe
is assumed to be embedded in an infinite homogeneous isotropic elastic
medium. Numerical results are presented for the maximum dynamic axial and
hoop stresses induced in the pipe when the disturbance is a plane longitu-
dinal wave propagating at different angles to the axis of the pipe. It is
found that maximum amplifications occur when the ground is soft ana they
are significantly influenced by the angle of incidence and the frequency
of the incident wave.

INTRODUCTION

Three dimensional dynamic response of buried pipelines is a subject
of considerable interest to earthquake engineers. Buried pipelines and
underground tunnels can be modeled as cylindrical shells. The problem of
practical interest is the estimation of peak displacements and stress
induced in the pipe or tunnel wall. Recently (Refs. 1-4) axisymmetric
(longitudinal) modes of vibration of cylindrical shells have been studied
and it is found that the stresses and displacements induced in the pipe
wall attain very large values when the frequency of the disturbance is low
and when the surrounding soil is soft.

In this paper the general nonaxisymmetric (including bending) modes
of vibration of the pipeline are considered. First the problem of moving
loads applied on the pipe wall is analyzed. Once the responses of these
applied loads are known, the motion due to any incident seismic waves can
be solved. As an illustration we consider the effect of a plane longitu-
dinal wave propagating at an arbitrary angle to the axis of the pipeline.
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GOVERNING EQUATIONS

The pipeline will be modeled as a cylindrical shell, infinitely long
and continuous, and elastically homogeneous and isotropic. It is assumed
that the surrounding ground is elastic, isotropic, and homogeneous. In our
earlier work (Refs. 3 and 4) it was found that the response of the shell
was not greatly modified if it was allowed not to be perfectly bonded with
the surrounding soil. So it will be assumed here that the shell is
perfectly bonded with its surrounding.

If 9(1) (r, 8, x, t) denotes the incident displacement field and u(s)
the change in this due to the presence of the pipeline, then the total
displacement field at any point in the ground is given by

e = e ¢

The cylindrical polar coordinates r, 6, x have been defined in
Figure 1.

Fig. 1. Geometry of the pipeline.

Note that both g(l) and g(s) will satisfy the elastic wave equation

TZVV.u—-VAVAu=—k22u (2)

where T = Cl/CZ , k2 = m/C2 s Cl’ C, being the longitudinal and shear wave

speeds in the ground. Harmonic time dependence of the form e twt has

been assumed.
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Denoting by U the displacement of a point on the shell middle surface
it can be shown that (Ref. 5) the radial, transverse, and axial components,
W, V, U, respectively, of U have the Fourier expansions

W = ? wnl cosnd + I W 2 sinn®
n=0 n=1 ©

(=] l <o
V= 1 Vn sinn® + I Vn2 cosné (3

™8

Unl cosn + I U 2 sinn6
n=0 n=l °

If it is assumed that the incident disturbance is a propagating wave
along the axis of the pipeline (x - axis) then the Fourier coefficients
a o

W, v

0 , and Una (e =1,2) are found by solving the matrix equation.

2 . . .
a-M-g21] 8% =-mpu®@ ;7@ (4)
where the matrices A and MT are defined in Ref. 5.

In writing (4) it has been assumed that the x-independence of U is of
the form eléX . Thus the apparent speed of propagation of the disturbance
along the pipeline is C=w/&, 2m/£ being its wavelength. Various quan-
tities appearing above are M= /G, Q2=12¢2dup*, p*=p /p, m=h/R, ¢ =kyR/T.
Note that h=thickness of the pipewall; R=mean radiﬁs; = shear modulus of
the ground; G=shear modulus of pipe; p =density of pipe; p = density of
ground. s

Wnu(l)(R), etc., are the nth Fourier coefficients of the incident dis-
turbance evalauted at r=R. Similarly, TrzE;;(R)’ etc. are the nth Fourier
coefficients of the traction components due to the incident field evaluated
at r=R. In deriving (4) Flugge's bending theory has been used. The matrix
MT represents the effective stiffnesses of the springs replacing the
ground. These stiffnesses are functions of w, &, C; and C2 and n. They
incorporate the radiation damping and the inertial effect of ground motion.
Full expressions for the elements of T can be found in Ref. 5. It is seen
from Eq. (4) that the nth mode of the dynamic displacement, S is caused by
the distributed loading p® given by the right hand side of the equation.
Once S% are known for each n these are then substituted in Eq. (3) to
form the modal sums for the determination of W, V, and U. The induced axial
and hoop stresses in the pipe are then found from the equations

Ewv
. D .2 P AV
= - = £ 5
Nxx 1£EPU ng+ z (w+ae) (5
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_Llg 4 Dy v LD B g
Nog =7 B F RS I 3 36 V358
R R
+ igE VU
ig p
where
Eh h2
E = D=E ==, v=Poisson's ratio of pipe
P 2 p 12
1-v
E = Young's modulus of pipe.

SOLUTION

To solve for the response of the pipe due to a seismic disturbance
it would then be convenient to find S® for the following three types of
loading:

(1) p?l) = (1), (ii) p?z) = (0) , (iii) ﬁ?3) = (0

(a = 1,2)

Denoting these loads by p%i) (i=1,2,3) and the corresponding responses

by S ¢ the nth modal response S® due to an incident field g(l) is then

(L)’
found to be
3

(u z. 7. v el g (6)

. 3
s = 1 ) i
= k21 “ik k i ()

i=1

Here Uja(l) and T,u(l) represent the nth modes of the jth components of

(1) and the associated traction i(l)
R. -

the incident field u , respectively,

both evaluated at r

Incident Plane Longitudinal Wave

Suppose that the incident disturbance is a plane longitudinal wave
given by

e ()

u = V¢ 7
where (1) (i) ik, (x cos®  + ing )

o1 =g () ety (x cos8y +y eindy) gy

kl = cu/Cl

This represents a wave with propagation vector making an angle 60 with
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C
the x-axis, wavelength £ = = 1
,» waveleng g kl coseo, and apparent wave speed C c050

along the pipe. 0

Numerical results for the maximum normalized axial and hoop stresses,
NXX and NHH, respectively, are presented graphically in the following. Here

N /h N ./h
XX NHH = o9
(1)pc (1)pC 2

in, 1 e/R

NXX =
in

b

2e/R

0 1

NUMERICAL RESULTS AND DISCUSSION

Figures 2 and 3 show the dependence of maximum NXX and NHH on the
angle of incidence 0y for different frequencies. These are for a concrete
cylinder of thickness ratio m = 0.05 lying in a soft soil for which

¥ = 0.84, o0 = 0.45, v = 0.2, M = 0.04.
¢ is the Poisson's ratio of the soil.

It is seen that at low frequencies maximum axial stress decreases
with increasing angles of incidence. Furthermore, at low frequencies
axial stress increases with increasing frequency. Note that at higher fre-
quencies the maximum axial stress increases first with increasing angle
of incidence then decreases.

The variation of maximum hoop stress with the angle of incidence
and frequency is quite different from that of the axial stress, except
that it also increases with frequency at low frequencies. It is interest-
ing to note that the hoop stress has a minimum at some angle of incidence
that depends on the frequency; however, at high frequencies, it increases
with increasing incident angles. The maximum hoop stress is found to be
generally higher than maximum axial stress at all angles of incidence and
frequencies. This suggests that the beam models used in estimating the
stresses in buried pipelines would not properly predict the failure modes
of buried pipelines.

Changes in the maximum axial stress with frequency for three different
material properties are shown in Figure 4. The first two cases are

I. &ed.wlhdﬁ'ﬁlnmk(p*=l0,c=OJS,M=&3,v=0£ﬂ.

II. Concrete cylinder in hard soil (p*=0.84, o = 0.25,
M=0.45, v=0.2).

The third case is the one described above. It is seen that very
large axial stresses are induced in a concrete pipe in soft soil at high
frequencies. Also it is noted that larger stresses are induced for
smaller M. This is further illustrated in Figure 5 where M is varied
keeping the other values fixed as in case II.
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Fig. 4. Variation of maximum axial stress with frequency
for different ground and pipeline properties.
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Fig. 5. Variation of maximum axial stress with

frequency for different rigidity ratios.
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CONCLUSIONS

Maximum dynamic stresses induced in a continuous pipeline-due to
plane longitudinal waves have been studied in this paper. It is shown
that maximum axial stresses are caused by longitudinal waves at small
angles of incidence to the pipeline whereas, maximum hoop stresses are
caused when the wave is incident nearly perpendicular to the pipe. Maxi-
mum dynamic amplification is found at low frequencies when the ratio of
rigidities of the soil and the pipeline is small.
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