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SUMMARY

Observation of the behavior of a pipeline during earthquakes has been
carried out at a site where the subsurface ground structure along the pipeline
is remarkably changing. Observed strains in the pipeline are always the
greatest at the boundaries between original rigid soils and less rigid soils
with which a valley had been filled to reclaim the land. The analysis of data
shows that the most essential cause of strain is a non-uniform response of
ground to S wave due to non-uniformity of the ground. While, surface waves
are shown to be a minor cause.

INTRODUCTION

Through the investigations of the damage to buried pipelines during
earthquakes, it became evident that damage ratio is the highest in the areas
where non-uniformity of surface ground structure is remarkable. 1), 2, 3)

The non-uniformity of ground structure is represented mainly by an abrupt
change of the depth of a soft surface layer. In order to investigate the
cause of concentration of damage in the areas with non-uniform ground struc-
ture, earthquake observation is being carried out using a gas pipeline buried
in a reclaimed land at Nankodai near Sendai City where pipelines for both gas
and water sustained a great number of damage during Miyagiken-oki earthquake

(1978).

OBSERVATION OF DYNAMIC RESPONSE OF PIPELINE

OQutline of Ground and Pipeline for Observation

Nankodai area is a residential land reclaimed by means of cutting off the
tops of hills and filling the valleys with cut soils. The pipeline for the
observation crosses a former valley which had been filled and flattened appar-
ently. The cross section of the filled valley along the pipeline is as shown
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in Figure 1. Soil profile shows that the original (natural) ground is compos-
ed of tuffy sandstone and tuff with N-value of greater than 50. While the
filled soil, although it originates in the same soil as the original ground,

is more or less sandy containing soft conglomerate up to about 100 mm in size,
and its N-values range from 2 to 21.

The velocities of S wave measured by PS loggings are 160 to 350 m/s in the
filled soil and 630 m/s in the original ground. Predominant frequencies of
the ground by means of micro tremor measurement at the location of the deepest
filled soil ranges from 2.0 to 8.0 Hz, and high peaks are observed between 3.0
and 5.0 Hz. While, measurements on the original ground do not show clear
peaks of predominant frequency.

The pipe for the observation is a steel plpe of 216.3 mm in outside diameter
with wall thickness of 5.8 mm.

Observation System

The locations of accelerometers and strain gages are as shown in Fig. 1.
Observations are made by use of an automatic data recording system which is
put into operation by a weak signal of earthquake taken by the accelerometer
GA 1.

Summary of Observed Recoxds

Maximum accelerations and maximum strains observed during sixteen earth-
quakes are summarized in Table 1. The value of maximum accelerations of the
pipeline is almost the same as that of the ground, and maximum accelerations
of both the ground and the pipeline always take place between the section of
filled soil (i.e., at GA 2, PA 1l and PA 2). Maximum strains in the pipeline
take place at the boundaries between the original ground and the filled soil
(i.e., at PS 7 and PS 3) in most cases, and the values of bending strains are
always less than 1/5 of those of axial strains except for the case of feeble
earthquakes. The distributions of the axial strains along the pipeline are
shown in Fig. 2. A remarkable feature that the strain always take the maximum

value around the both boundaries between the original ground and the filled
ground is observed.

ANALYSIS OF RECORDS

Fig. 3 shows power spectra calculated from the waveform records of accel-
erations and strains during two earthquakes (No. 14 and 15 in Table 1) which
induced the greatest strains in the pipeline throughout the observation.
Earthquake No. 14 may be regarded as an example of distant earthquakes which
usually contain considerably strong power in low frequency region. The power
spectra of the records both GA 1X and GA 3X (both accelerometers, GA 1 and GA
3, are in the original ground. The letter X denote the direction of pipeline
axis) in Fig. 3, a) show the predominance of low frequency component (0.88
Hz). 1In contrast, earthquake No. 15 shows a typical feature of short distance
earthquakes. Very high-frequency components are predominant in this earth-
quake as shown in the power spectra for both GA 1X and GA 3X in Fig. 3, b).
Comparison between the power spectra for GA 2X and GA 1X shows the amplifica-
tion of earthquake motion by the stratum of the filled soil. The components
with frequencies around 4.0 Hz are greatly amplified during the both earth-
quakes. This frequency agrees with the predominant frequency of the filled
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soil stratum inferred from micro tremor characteristics. In contrast, fre-
quency components both higher than and lower than 4.0 Hz are considerably
suppressed. The power spectra for PA 2X for the both earthquakes show fre-
quency distribution intermediate between the power spectrum for GA 2X and that
for GA 3X. Power spectra for strain waveforms in the pipeline show a remarka-
ble feature; predominant frequencies in the strain waveform at PS 7 (and PS 3
as well), which showed the maximum strains during the both earthquakes, are in
almost perfect agreement with those in the acceleration waveform at GA 2. On
the other hand, power spectra of the strains at PS 5 and PS 9 do not show such
remarkable feature as in the case of PS 7 (and PS 3), and the power is less
intense than that of the strains at PS 7 (and PS 3).

The above facts show that the strain in the pipeline is mainly caused by
the difference in the motions between the filled soil and original ground, and
the magnitude of the strain is mainly determined by the intensity of the
motion of the filled soil.

Fig. 4 shows a result of disintegration of strain waveforms for the same
earthquakes. The original waveforms of acceleration and strain at representa-
tive locations are disintegrated into three frequency ranges of components.

As for Earthquake No. 14, the low frequency band (0 to 2.0 Hz) component of
the acceleration at the original ground (GA 3X) shows almost the same inten-—
sity as the medium frequency band (2.0 to 5.0 Hz) component. However, it
remains almost constant in intensity throughout all locations (GA 3X, GA 2X,
and PA 2X), while the medium frequency component is greatly amplified by the
filled soil (GA 2X). Waveform of each frequency band component of the strain
(PS 7) closely resembles to the corresponding component of the acceleration of
the filled soil. High frequency band (5.0 to 10.0 Hz) component is quite
feeble.

In contrast, Earthquake No. 15 shows intense high frequency band (5.0 to 25.0
Hz) component in the acceleration waveform at the original ground, while low
frequency component is very little. The amplification of medium frequency
component by the filled soil is just as in the case of Earthquake No. 14. It
is shown that the contribution of the high frequency component to the strain
in the pipeline is relatively less.

The both earthquakes, although their frequency characteristics are dif-
ferent from each other, show a common feature that the medium frequency band
component of the vibration which correspond to the natural frequencies (i.e.
predominant frequencies by micro tremor measurement) of the filled soil con-
tribute to the major part of the magnitude of strain in the pipeline. From
Fig. 4, it is known that more than 60% of the value of the maximum strain is
due to the medium frequency component in the both earthquakes.

CONCLUSIONS

Earthquake observation on a pipeline which crosses a valley filled with
relatively less rigid soil showed a peculiar pattern of distribution of strain
in the pipeline as shown in Fig. 2. Both power spectra analyses and frequency
band analyses could explain the cause of the peculiarity of strain distribu-
tion. The causes and the characteristics of strain in a pipeline during an
earthquake are summerized as follows:
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The greater part of the strain is mainly due to the existence of
grounds with different vibration characteristics.

The maximum strain in the pipeline takes place around the boundary
between a soft ground and a rigid ground.

The greater part of the magnitude of the strain is mainly determined by
the response of the soft soil stratum to an earthquake; this implies
that the response of the ground to the S wave is the most important
factor for the prediction of strains in pipelines, and the surface wave
is less important.
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a) Earthquake No. 14 (Distant Earthquake)
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Fig. 3 Power Spectra of Accelerations and Strains during
Two Representative Earthquakes
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a) Earthquake No. 14 (Distant Earthquake)
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